00:00 / 04:08
连播
清屏
智能
倍速
点赞15
00:00 / 02:23
连播
清屏
智能
倍速
点赞1
量子力学 量子力学,这一20世纪初诞生的物理学理论,是现代物理学的基石之一。量子力学的诞生,源于对经典物理学无法解释的实验现象的深刻反思。19世纪末,物理学家们发现,当物体尺度缩小到原子和分子级别时,牛顿力学和麦克斯韦电磁理论等经典物理学理论开始失效。例如,黑体辐射问题、光电效应、原子光谱的规律性等现象,都无法用经典理论来合理解释。1900年,德国物理学家马克斯·普朗克提出了能量量子化的假设,成功解释了黑体辐射问题,标志着量子理论的诞生。随后,爱因斯坦、玻尔、海森堡、薛定谔等一大批杰出科学家,通过不懈的努力和开创性的工作,逐步构建了量子力学的理论体系。 量子力学的基本原理包括波粒二象性、不确定性原理、量子态叠加和量子纠缠等。波粒二象性指出,微观粒子既表现出波动性,又表现出粒子性。不确定性原理,又称海森堡原理,是量子力学中的一个核心原理。它表明,我们无法同时精确测量微观粒子的位置和动量(或其他共轭变量),这种不确定性是量子力学内禀的属性,与测量技术的精度无关。这一原理揭示了微观粒子世界的本质不确定性,对经典物理学中的决定论观念构成了严峻挑战。 量子态叠加原理指出,微观粒子可以处于多个可能状态的叠加态中,直到被观测时才坍缩到其中一个确定状态。这一原理是量子力学中最为奇特和难以理解的现象之一,也是量子计算、量子通信等前沿科技领域的重要理论基础。量子纠缠则是一种更为神秘的现象。当两个或多个微观粒子处于纠缠态时,它们之间的状态是相互关联的,无论相隔多远,对一个粒子的测量都会立即影响到另一个粒子的状态。这种超距作用现象,不仅挑战了我们对时空结构的传统理解,也为量子通信和量子计算等领域提供了前所未有的可能性。 双缝干涉实验、斯特恩-盖拉赫实验和贝尔不等式实验等,都是量子力学发展史上的里程碑式实验。双缝干涉实验揭示了光的波粒二象性。斯特恩-盖拉赫实验则展示了量子态叠加和量子态测量的关系。实验发现,当银原子通过不均匀磁场时,它们会分裂成两个方向相反的束流,这表明银原子具有两种可能的磁矩状态。然而,当对银原子进行更精确的测量时,它们会坍缩到其中一个确定状态。贝尔不等式实验则是检验量子力学和经典物理学之间差异的关键实验。实验发现,当两个粒子处于纠缠态时,它们之间的关联性超出了经典物理学所能允许的范围。这一发现不仅证实了量子纠缠的存在,也进一步巩固了量子力学的理论体系。
00:00 / 02:29
连播
清屏
智能
倍速
点赞3
00:00 / 05:14
连播
清屏
智能
倍速
点赞55
00:00 / 01:30
连播
清屏
智能
倍速
点赞17
00:00 / 02:22
连播
清屏
智能
倍速
点赞24
00:00 / 01:14
连播
清屏
智能
倍速
点赞24
00:00 / 01:11
连播
清屏
智能
倍速
点赞25