66662周前
这或许是现代物理学最震惊的一项理论,发现黑洞可能并不存在事件视界。黑洞的边界就是时空终结的奇点,这就是现代物理学中一个被广泛讨论的理论:黑洞火墙理论。 科学家为什么要提出黑洞火墙理论?这个理论又是又是如何产生的?本期视频我将带你一探究竟。 如果你在地球上发射一枚炮弹,那么它在飞行一段高度后就会落回到地面上。但是如果你发射炮弹的速度非常快,比如超过了每秒11.2公里,那么这枚炮弹就会摆脱地球的引力逃向外太空,这个速度正是地球的逃逸速度。 实际上宇宙中的各种天体都有一个逃逸速度,比如木星的逃逸速度约为每秒60公里,太阳的逃逸速度约为每秒600公里。天体的质量越大,它的逃逸速度也越大。 如果一颗恒星的逃逸速度超过了每秒30万公里,那么这颗恒星的逃逸速度就超过了光速,这意味着即使是光也无法从这颗恒星逃离,此时这个恒星就变成了一颗暗星,暗星正是黑洞的雏形。黑洞就是一个逃逸速度超过光速的天体。 表面上看这个对黑洞的解释很形象的让我们理解了为什么光无法从黑洞中逃离。然而可能让你意想不到的是这个解释完全是错误的。 首先这个解释会得到一个极其荒诞的结论,那就是即使黑洞的逃逸速度大于光速,但任何物体都能从黑洞中出来。这是因为根据逃逸速度的定义,黑洞的逃逸速度大于光速指的是如果你在黑洞表面突然以光速逃离黑洞,那么在没有任何火箭助推力的情况下你最终会落回到黑洞。 但是在你落回黑洞之前你完全有机会再次把速度加速到接近光速,此时你的速度早已超过了落回黑洞时的速度,你将很轻松的从黑洞中逃离。然而在一个真实的黑洞中任何物体都无法从中逃离,因此通过逃逸速度来定义黑洞是无法解释一个真实的黑洞的。 那么我们该如何定义黑洞?实际上我们只能通过广义相对论来定义黑洞。在广义相对论下黑洞有两个特性,第一个是任何物体都无法从黑洞中逃离,第二个是任何物体都无法进入黑洞。 第一个特性我们都比较熟悉了,这里重点说一下第二个特性,以经典的星际穿越中的场景为例,当库珀掉进黑洞时,从我们的视角看,首先他下落的速度会越来越快,不过当他即将进入黑洞时,他的速度却突然慢了下来。这是因为黑洞周围的时间流速是不一样的,越接近黑洞,时间流逝的速度就越慢。 当库珀真正到达黑洞的边界时,库珀的时间完全停止了。我们看到的是库珀冻结在了黑洞的表面,你或许觉得这一切也比较好理解,因为连光线都无法从黑洞中逃离。库珀身上的光线冻结在黑洞表面也很正常,
00:00 / 03:40
连播
清屏
智能
倍速
点赞42
量子力学 量子力学,这一20世纪初诞生的物理学理论,是现代物理学的基石之一。量子力学的诞生,源于对经典物理学无法解释的实验现象的深刻反思。19世纪末,物理学家们发现,当物体尺度缩小到原子和分子级别时,牛顿力学和麦克斯韦电磁理论等经典物理学理论开始失效。例如,黑体辐射问题、光电效应、原子光谱的规律性等现象,都无法用经典理论来合理解释。1900年,德国物理学家马克斯·普朗克提出了能量量子化的假设,成功解释了黑体辐射问题,标志着量子理论的诞生。随后,爱因斯坦、玻尔、海森堡、薛定谔等一大批杰出科学家,通过不懈的努力和开创性的工作,逐步构建了量子力学的理论体系。 量子力学的基本原理包括波粒二象性、不确定性原理、量子态叠加和量子纠缠等。波粒二象性指出,微观粒子既表现出波动性,又表现出粒子性。不确定性原理,又称海森堡原理,是量子力学中的一个核心原理。它表明,我们无法同时精确测量微观粒子的位置和动量(或其他共轭变量),这种不确定性是量子力学内禀的属性,与测量技术的精度无关。这一原理揭示了微观粒子世界的本质不确定性,对经典物理学中的决定论观念构成了严峻挑战。 量子态叠加原理指出,微观粒子可以处于多个可能状态的叠加态中,直到被观测时才坍缩到其中一个确定状态。这一原理是量子力学中最为奇特和难以理解的现象之一,也是量子计算、量子通信等前沿科技领域的重要理论基础。量子纠缠则是一种更为神秘的现象。当两个或多个微观粒子处于纠缠态时,它们之间的状态是相互关联的,无论相隔多远,对一个粒子的测量都会立即影响到另一个粒子的状态。这种超距作用现象,不仅挑战了我们对时空结构的传统理解,也为量子通信和量子计算等领域提供了前所未有的可能性。 双缝干涉实验、斯特恩-盖拉赫实验和贝尔不等式实验等,都是量子力学发展史上的里程碑式实验。双缝干涉实验揭示了光的波粒二象性。斯特恩-盖拉赫实验则展示了量子态叠加和量子态测量的关系。实验发现,当银原子通过不均匀磁场时,它们会分裂成两个方向相反的束流,这表明银原子具有两种可能的磁矩状态。然而,当对银原子进行更精确的测量时,它们会坍缩到其中一个确定状态。贝尔不等式实验则是检验量子力学和经典物理学之间差异的关键实验。实验发现,当两个粒子处于纠缠态时,它们之间的关联性超出了经典物理学所能允许的范围。这一发现不仅证实了量子纠缠的存在,也进一步巩固了量子力学的理论体系。
00:00 / 02:29
连播
清屏
智能
倍速
点赞3
00:00 / 01:25
连播
清屏
智能
倍速
点赞46
电磁场理论 电磁场理论,作为物理学的一个重要分支,自19世纪中叶麦克斯韦提出其经典方程组以来,便成为了连接宏观世界与微观粒子之间的桥梁。它不仅深刻揭示了电场与磁场之间的内在联系,还为无线通信、电力传输、电子学乃至现代科技的诸多领域奠定了理论基础。 电磁场,是由变化的电场和磁场相互激发而形成的统一物理场。电场描述的是电荷周围存在的空间效应,使得电荷之间产生相互作用力;而磁场则描述了磁体或电流周围的空间效应,体现了磁力的来源。麦克斯韦方程组作为电磁场理论的核心,由四个方程组成,分别描述了电场的高斯定律、磁场的高斯定律、法拉第电磁感应定律和安培环路定律,并引入了位移电流的概念,从而预言了电磁波的存在。这一理论革命性地指出,电场和磁场的变化能够以波的形式在空间中传播,即电磁波,其速度与光速相同,这一发现为后来的无线电波、光波乃至整个电磁波谱的研究开辟了道路。 电磁场理论的发展,可以追溯到18世纪的库仑和法拉第等人的工作。库仑通过实验测定了静止电荷之间的力,即库仑定律,为电场理论奠定了基础。而法拉第则通过一系列实验,发现了电磁感应现象,即变化的磁场可以产生电场,这一发现为电磁场理论的建立提供了关键线索。然而,真正将电磁现象统一为一个完整理论的,是苏格兰物理学家詹姆斯·克拉克·麦克斯韦。他在总结前人工作的基础上,提出了麦克斯韦方程组,不仅解释了已知的电磁现象,还预言了电磁波的存在,从而开启了电磁学研究的新纪元。 电磁场理论的应用广泛而深远,几乎渗透到现代社会的每一个角落。在通信领域,电磁波的发现使得无线电通信成为可能,从早期的无线电报、广播,到今天的移动通信、卫星通信,电磁场理论都是其技术基础。在电力传输方面,交流电的应用依赖于电磁感应原理,实现了电能的远距离高效传输。在电子学领域,半导体器件的工作原理基于量子力学与电磁场理论的结合,推动了计算机、互联网等信息技术的发展。 随着科技的进步,电磁场理论的研究正向更微观、更宏观两个方向发展。在微观层面,量子电磁学的发展试图将电磁场理论与量子力学相结合,探索电磁相互作用的量子本质。在宏观层面,随着空间探测和宇宙学研究的深入,电磁场在宇宙大尺度结构中的作用成为研究热点,如宇宙微波背景辐射的研究对于理解宇宙早期状态具有重要意义。此外,随着新材料、新技术的不断涌现,电磁场理论在能源转换、信息传输、生物医学工程等领域的应用也将迎来更多创新和发展。
00:00 / 02:31
连播
清屏
智能
倍速
点赞4
00:00 / 02:10
连播
清屏
智能
倍速
点赞5
00:00 / 50:40
连播
清屏
智能
倍速
点赞4
00:00 / 02:26
连播
清屏
智能
倍速
点赞65
00:00 / 06:41
连播
清屏
智能
倍速
点赞93
00:00 / 06:11
连播
清屏
智能
倍速
点赞23
00:00 / 08:49
连播
清屏
智能
倍速
点赞58