00:00 / 00:33
连播
清屏
智能
倍速
点赞189
00:00 / 01:55
连播
清屏
智能
倍速
点赞712
00:00 / 00:48
连播
清屏
智能
倍速
点赞161
00:00 / 03:12
连播
清屏
智能
倍速
点赞11
00:00 / 02:53
连播
清屏
智能
倍速
点赞1
00:00 / 03:09
连播
清屏
智能
倍速
点赞7
00:00 / 01:26
连播
清屏
智能
倍速
点赞94
00:00 / 06:05
连播
清屏
智能
倍速
点赞2689
00:00 / 08:17
连播
清屏
智能
倍速
点赞20
固体物理 固体物理是研究固体物质的结构、性质及其相互关系的物理学分支,它不仅是凝聚态物理的核心领域,也是现代材料科学、电子工程和纳米技术的重要基础。从晶体结构到电子能带,从声子振动到超导现象,固体物理揭示了物质在固态下的丰富行为,为人类技术进步提供了源源不断的理论支持。 一、固体物理的基本概念与研究范畴。 固体物理的研究对象涵盖所有具有固定形状和体积的物质状态。根据百度百科的定义,固态是物质四种基本聚集态(固态、液态、气态、等离子态)之一,其特点是分子/原子间作用力强,粒子排列紧密且具有长程有序(晶体)或短程有序(非晶)结构。固体物理正是从微观层面解析这种有序性如何决定宏观性质——当原子间距缩小到0.1-1纳米量级时,量子效应开始主导材料的电学、磁学和光学特性。 典型研究内容包括。晶体结构分析:通过X射线衍射等手段解析晶格周期排列,其中布拉维格子理论将晶体结构归纳为7大晶系和14种空间群。例如金刚石的立方晶胞结构直接决定了其超高硬度。电子能带理论:基于量子力学发展出的能带模型成功解释了导体、半导体和绝缘体的区别。当原子形成晶体时,离散的原子能级展宽为能带,禁带宽度成为材料分类的关键参数。晶格动力学:声子理论阐明了固体比热容随温度变化的规律,也是理解超导BCS理论的基础。 二、核心理论的发展脉络。固体物理的理论体系经历了三次重大突破。经典理论阶段(20世纪初):德鲁德和洛伦兹提出自由电子气模型,将金属导电性归因于自由电子的漂移运动。量子理论革命(1920-1950年代):布洛赫定理证明周期性势场中电子波函数具有ψ(x)=u(x)eⁱᵏˣ形式(u(x)与晶格同周期);布里渊区概念的建立将倒空间划分为允许能带与禁带;巴丁-库珀-施里弗(BCS)理论揭示电子通过声子媒介形成库珀对实现超导。现代凝聚态物理(1970年代至今):量子霍尔效应(1980)和拓扑绝缘体(2005)的发现拓展了能带拓扑分类;密度泛函理论(DFT)使材料计算从定性走向定量预测。 三、实验技术与表征方法。现代固体物理研究依赖于精密的实验手段:结构分析技术:X射线衍射:测定晶面间距精度达0.001Å;透射电镜:原子级分辨率配合选区电子衍射。电子态探测:角分辨光电子能谱直接测绘费米面;扫描隧道显微镜实现表面态局域探测。物性测量:四探针法测量电阻率(10⁻⁸~10¹⁶Ω·cm范围);SQUID磁强计检测超导迈斯纳效应。
00:00 / 02:37
连播
清屏
智能
倍速
点赞4
00:00 / 04:35
连播
清屏
智能
倍速
点赞1007