Karminski4天前
Qwen3.5实测!来看贺岁档大模型的实力! 贺岁档大模型来啦! Qwen3.5 这次支持了文本、图片、视频多模态输入, 本次准备了全新的后端能力测试! 以及照例带来前端能力、Agent、长上下文能力的全面测试! 来看本次新增的后端编程测试 vector DB Bench: 要求大模型从零实现一个高性能向量数据库, 只给提示词不给实现方案, 配合 coding agent 自动写代码、编译、跑分. 结果 Qwen3.5 直接甩出王炸 —— QPS 1405, 是 Kimi-K2.5 的 4.8 倍, GLM-5 的 25 倍! 关键在于它不仅用了 IVF 倒排索引 + AVX512F 指令集, 还在有限轮次内自主探索出了最优聚类参数 (K=2048, nprobe=30), 每次查询只需扫描约 15000 条数据, 而 Kimi-K2.5 的参数配比要扫描 75000 条, 正好解释了近 5 倍的性能差距. 这波调参堪称神之一手. 前端编程也有进步: 大象牙膏测试终于能正确建模三角烧瓶, 鞭炮连锁爆炸的粒子光影效果不错, 支持多模态后甚至可以对着网站录屏直接克隆. 但空间理解仍是短板, 陀飞轮机芯测试中齿轮设计暴露了差距. 指令遵循: 洛希极限测试中的指令遵循达到 85.9% (Gemini-3.0-Pro 为 90.6%), 主要扣分在未遵循加速曲线公式. Agent 能力: 硅基骑手测试得分 668.43, 仅次于 GLM-5 的 738.69, 也侧面解释了为什么后端编程 Agent 表现这么强. 长文本召回: 256K 上下文召回 99.1%, 但不给原文时四选一蒙对率高达 75.6%, 结果完全不置信. 总结: Qwen3.5 最亮眼的是后端编程能力, 同样的 IVF 算法靠调参拉开 5 倍差距, Agent 能力同样在线. 不过本次测试还发现了点小问题, 输出偶尔不太稳定, 会漏掉 markdown 语法或把答案输出到 thinking 标签里, 这点要注意, 目前我已经反馈给官方了. 这份新年礼物, 大家觉得怎么样? #Qwen #千问大模型 #Qwen35 #阿里千问 #通义实验室
00:00 / 07:00
连播
清屏
智能
倍速
点赞47
00:00 / 00:53
连播
清屏
智能
倍速
点赞338
00:00 / 02:12
连播
清屏
智能
倍速
点赞38
阿里在春节全新开源大模型Qwen3.5! 阿里在春节全新开源大模型Qwen3.5! Qwen3.5-Plus拥有3970亿总参数,但激活参数仅170亿,性能超越了上一代万亿级模型。得益于创新的极致稀疏MoE架构,其推理效率大幅提升,最大吞吐量可达19倍,而API调用成本低至每百万Token 0.8元,性价比极高。 此次升级的核心是从“语言模型”进化为“原生多模态大模型”。与市面上常见的“拼装”方案不同,Qwen3.5从预训练第一天起,就让文本、图像、视频等多模态数据在同一架构下进行深度融合学习,使其具备了像人一样的跨模态直觉理解力。实测中,它能将手绘草图直接生成可用的网页代码,也能精准理解复杂图片中的物体、模糊文字并进行综合推理。 模型的技术突破在于四大核心创新:混合注意力机制提升了长文本处理效率;原生多Token预测使响应速度接近“秒回”;系统级训练稳定性优化(如获得NeurIPS 2025最佳论文奖的注意力门控机制)确保了大规模训练的稳定。这些技术共同实现了“以小博大”,在保持顶尖性能的同时,让部署成本大幅降低,变得更加“好用、实用、用得起”。 此外,Qwen3.5具备强大的智能体(Agent)能力,可作为视觉智能体自主操作手机与电脑完成任务,并与OpenClaw等工具集成,实现自动化流程。总体而言,Qwen3.5不仅再次刷新了开源模型的能力天花板,更将行业竞争的重点从单纯比拼参数规模,引向了追求极致效率与实用性的新阶段。
00:00 / 05:12
连播
清屏
智能
倍速
点赞34
00:00 / 02:21
连播
清屏
智能
倍速
点赞76
00:00 / 01:08
连播
清屏
智能
倍速
点赞216
新闻标题: 阿里除夕夜开源Qwen3.5大模型,A股算力、应用与生态伙伴全面受益 简要概括: 2026年2月16日(除夕夜),阿里巴巴宣布将开源新一代千问大模型Qwen3.5,该模型实现了模型架构的创新。此举旨在降低AI应用门槛、繁荣开发者生态,并推动其“AI to C”战略落地。 核心影响与受益链条: 1. 算力基础设施直接受益:大模型训练与推理需求激增,利好服务器、IDC、芯片、光模块、温控等硬件供应商。例如,浪潮信息作为阿里云AI服务器核心供应商,业绩深度绑定;数据港为模型运行提供关键算力支撑。 2. 垂直行业应用加速落地:通过“千问伙伴计划”,模型能力渗透至酒店、交通、金融、医疗、电商等领域。石基信息、千方科技、恒生电子等合作伙伴将借助千问AI优化其行业解决方案。 3. 技术生态服务商扮演桥梁角色:软通动力、润建股份等公司提供模型集成、算力调度及企业级AI转型服务,是模型规模化落地的重要推动者。 4. 零售与营销场景优化体验:阿里系持股或深度合作的三江购物、蓝色光标等公司,将千问AI能力用于线下门店数字化、社区团购及智能营销,提升运营效率。 总结:阿里此次开源巩固了其在大模型生态的领导地位,从上游算力、中游行业应用到下游零售场景,形成了一条完整的A股受益产业链。同时需注意AI技术迭代、客户集中度及商业化进度等潜在风险。
00:00 / 00:27
连播
清屏
智能
倍速
点赞129