粉丝9903获赞5.4万

好,大家好,那么这个视频呢,跟大家讲一下本次美赛啊,我的选题建议以及各题目的这个思路啊,那么我这里已经准备好了一个十一页的啊,这个思路文档,呃,包括 a t 幕和 c t 幕,我个人精准校对之后的啊,这个翻译, 呃啊,我都跟大家去讲,那么在这个思路的讲解过程中呢,我也会把啊大家可能会忽略到的一些关键的信息和雷区注意点,我全部都会跟大家一一讲清楚啊,请大家务必有耐心的把这个视频呢仔细的去看完啊,防止大家在做起过程中呢挖到什么坑。好,那我们首先来看一下这个选择题建议, 那么我们这次选择助攻呢,是 a 题目啊,以及这个 c 题目,那么后续呢,都会完成这两道题目完整原创论文以及相应的代码和结果啊,这个呢,跟我往期的这个比赛都是一样的啊,大家可以继续看我往期的这个视频啊,我现在发布的是这个选题建议和思路视频,那么后面呢 啊,我们预计会在明天,也就是一月三十一号的中午左右就会更新完毕。呃,这两道题目完整的原创论文以及相应代码和结果的这个 教学,那关于这个后续完整成品的说明呢,大家可以看这个视频的评论区啊,这好的不多说啊,我们来看一下这个选择题方面,那么这次这道的六道题目呢, 呃,这个 a 题目啊,是比较硬糙的,加一个智能手机电池的耗电建模,这个呢,题目也明确告诉我们了啊,就要建立一个连续实践数学模型,这个其实就是微分方程模型,这是非常非常经典的啊,大家如果说,呃,你们有受过学校的建模比赛的话,这就是其中非常经典的这种微分方程类的问题。 再一个非常经典的这个题目就是 c 题目了啊,也是往年大家每次都选择最多的这个题目啊,就是纯数据分析类的题目。这次的 c 题目呢,呃,也比较复杂一些,因为它里面有很多规则,包括这个数据说明 啊,这个数据本身呢,也比较复杂一些啊,就是我们或许要去读取和这个处理比较复杂一些,所以呢,在我稍后的讲解过程中呢,我也会把我们在所有的数据读取中啊,可能会出错的地方,我们需要去关注的一些啊,关键的信息和雷区注意点我都为大家讲清楚,好吧, 好,那其余一个题目呢,我不推荐大家去进行选择啊,因为呢,呃一方面获奖率并不高。呃,再就是呢,可能有的题目比较水一点,比如这个 b 题目呢,这个利用太空电机系统建立月球直径。 呃,这道题目呢,估计很多人可能会用 ai 去做这个,呃,就稍微水一点,然后这次的 i、 c、 m 这三道题目啊, d、 f 这三道题目。呃, d 题目的主要难点呢在于我们要去收集一些相应的数据。呃,这个是比较困难的,那再去这道题目呢, 就我们能够采用的模型也比较有限啊,就你想要做的出产的也比较困难啊,比较有限。然后这个 e 题目,被动式遮阳和这个 f 题目啊,这个 e 题目呢, 呃,难度其实并不算高,而且主要是建立这个非稳态的热平衡方程,这个呢,在以往的建模型材里面呢,也比较多一些,但这次这个 e 题目呢,如果我们从横切去从这个获奖角度而言的话啊,眼目图眼大剧进行选择啊,包括这个 f 题目也是一样,这个 f 题目呢,呃, 一方面我们要去收集一些这个相应数据啊,这个稍微能困难一点,再个用这个 i 题目呢,也比较能做得出彩啊。总归呢, 这是为什么推荐大家去选择 d 题目和这个 c 题目呢?因为这两个题目呢,呃,都是大家这次比赛呢,比较容易做得出彩的啊。这个类型的题目, a 题目比较容易做得出彩的地方在于呢, a 题目比较硬核一点啊,我们只要建立合理的违反方程,那么后续呢,我也会跟大家去讲这个啊, a 题目详细完整的建模思路。 好啊,包括一些相应的数据呢,我已经完成了初步的这个收集啊,其这道题目的数据呢,只需需要去收集一些新的参数就可以了。好, 这个呢,做好的话呢,咱们大家这道题目的获奖概率呢,还是很高的好吧,呃,然后就是 ct 目啊,这个数据分析类的题目,呃,我们只要去啊,把各种我们能考虑到的啊,这个数据的参数呢 和注意点我们都落实到位。再一看美国,我们建立合理的注出页模型啊,把题目每一问都解达到位,那么这道题目的扩展率呢,也是比较高的。好,那么选题建议呢,就讲到这里,那么本次的 a 题目和 c 题目呢,我们或许都会完成这个完整的原初论文集现在代码和结果。那关于这个完整的整理的说明呢?大家可以看这个视频的评论区,我们有机会在明天就是一月三十号的中午左右就会更新完毕。 呃,这两个题目完整的原初论文集,现在代码。好,那么废话不多说,我们现在来看一下这个 c 题目的思路。 好,那么这个视频先给大家讲一下这个 c 题目的思路,那么稍后我会再发布的视频去讲解 a 题目的详细思路啊,大家敬请期待。好,我们来先看一下 c 题目。 c 题目呢啊,这也是我人工教对之后的一个精准的翻译版本 啊。呃,因为这样节目的翻译是比较困难的啊,大家容易很多地方出错,如果用 g 翻的话,简直得有一个完整的啊,这样的一个翻译版本。那关于这个, 好,我现在讲解的这个思路,文档呀,包括 a 题目啊, c 题目啊等等的这些人工教对的翻译啊,文档啊,包括这个完整的说明呢,大家都可以看这个视频的评论区。好吧,我来看下 c 题目,那么几乎被讲的我就不多说了。好吧, 他第一位呢,向我们开发一个数学模型。呃,然后呢,为每位参赛者在他们参赛的周四中生成估算的粉丝投票数,那么这个粉丝投票数呢,他是未知的,且被严格保密保守的秘密。就题目给我们的这个数据呢,它里面是只有这个评委的投票数啊,评委的投票数是给出的,但这个粉丝投票数呢,他是完全没有给出的。 然后大家这里面有分了几个子问题啊,一方面是问我们这个模型是否去正确估算了,导致与每周谁被淘汰的结果相一致的粉丝投票啊,提供一个一致性的度量。再一个呢,我们生成的这个粉丝投票数呢,有多大的确定性?那么这种确定性呢,我们要去进行度量。好,我们来看一下这个 ct 目第一问的这个思路, 那么其实呢,整个这个 ct 目呢,它的核心难点就在于我们的粉丝投票数据呢,它是一个未知的引变量啊,我们是只知道粉就是评委的打分和它的输出,输出呢就是谁被淘汰了嘛,对不对? 我们需要根据这两个呢去反向推导出我们粉丝投票的分布,这是我们的这个问题的核心难点所在啊,也是我们必须要去完成的一步,就是我们第一步呢,先把这个完成,之后呢,我们后面呢才有的做,能理解吗?所以我们基于这个推导出的数据呢,才能够进行后续的政策分析和模型优化。 好,我来看一下啊,针对于问题一,问题一呢,这个估算粉丝投票模型呢,这就是一个参数估计和引变量推断的问题啊,那么这里的模式给大家讲这种三种方案,这三种方案呢,首先第一种方案啊, 就是这个用限行规划或者约束满足模型,那么我们这个呢,就是说把每一周的比赛看做一个方程组,那么假如说每位选手某位选手被淘汰了,而另一个选手就晋级了,那我们当时呢,是必然满足当时的规则约束的啊,比如说他的这个得分啊,是比令格高的,我们把这个粉丝投票占比呢作为决策变量来满足啊,所有淘汰约束为条件 去建立一个优化模型啊,我们建这样优化模型啊,我们的目标函数呢,就是去最大化粉丝投票分布的方差啊,或者最大化商议,就是说在没有信息的时候是最随机的,然后我们去做一次性检验就可以了, 就是计算模型生成的这个排名呢和实际排名的这个系数啊。那么这种思路他的优点呢,就是在数据推导上是比较严谨的,而且我们呢能够生成出一个可行解。那么缺点呢,就是在于他对于排名真的涉及到这个主规划问题就求解呢,是比较困难的,而且可能会存在多克几。 那么在针对于这个本次竞赛而言呢,呃,这个竞赛的潜力还是比较高的啊,就是得分潜力,呃, 就针对于以往这种剑魔比赛而言呢,这是一个比较标准的这样一个运球学剑魔的方式呃,结果是比较稳健的。那么另外一种也是我这次推荐大家去选择的这样一个做法呢啊,就创新性比较强的呃,也比较能够呃帮助大家去进行获奖的这样一个, 我这样去打讲吧。那么第一种方法呢,可能竞赛的获奖潜力就是 h 奖啊。那么第二种就是美赛评委比较喜欢的这种创新性比较强的做法,那我们的这个思路呢,其实就是贝耶斯马尔可夫列蒙特卡罗方法, 我们这个时候就是说不由不要求去求一个单一的追优解,而求这个粉丝投票的概率分布啊,我们假设粉丝投票呢是服从某种鲜艳分布的,然后我们根据每一周的淘汰结果呢,作为观测数据去更新我们的后焰分布啊,正是它的这个相应数量形式。 然后我们过去呢,可以去啊,去研究他这个确定性度量,那我们这个确定度呢,度量呢,就可以直接通过后验分布的标准查或者这些区间去回应题目中关于这个确定性度量的问题,因为这个题目呢是明确要求我们啊,要去看一下我们这个粉丝图标总数呢,有多大确定性的 好。那么这种方法呢啊,它的优点呢,就是我们可以去完美的回答关于确定性的提问啊,而且在理论的这个思维程度上是比较深的,这个难点就在于它的计算量比较大一点,然后代码编写复杂,但这个呢,大家不用去管啊,我这个代码呢,我会呃去完成这个十一的编写,然后大家到时候直接运行我给出的这个 python 代码就可以了 啊,还是跟以往的时候比赛一样,我都会给出这个代码和结果的。好吧,那么这个在竞赛获奖前提方面呢,基本上是能够拿到 m 的 o 奖的。就这个思路方面, 这种模型呢,在求解这种不确定性的繁衍问题上面,基本上可以说天花板了啊,就顶级方案啊,当然还有一种思路呢,就是采用奇葩式模拟或者说遗传算法。呃,这个呢,结果是疑心比较大一点啊,这个我们作为一个备选方案啊,就是说假如我们前面两种方法呢,真的要做不出来的话,就根据实际数据学求解啊,很难跑或者跑不出来的话 啊,那么可以作为一个备选方案。好吧,这个就不跟大家多讲了,来看一下他的第二问。待会他就问呢,让我们根据这个粉丝投票估算值和其余数据啊,就说现在我们这个数据已经得出了,对不对 啊?那包括其他数据,然后根据这些数据呢?我们先汇总完了之后往下看一下,开始让我们去比较和对比节目使用了两种结合屏幕和粉丝的方法啊,解决出排名和百分比在各级产生的结果,然后如果能在结果上出现差异的话,那么是否有一种方法似乎比另一种更偏向于粉丝投票啊?当然再就是我们去检查应用于特定领域的投票方法, 那么然后说世界名人身上呢,都存在争议,也就是存在这个分歧,大家问我们的结合评委方法和 vs 投票的方法呢?是否会导致这个结果相同?再一个就是加入评委,选择淘汰倒数两对中哪一对的额外方法会产生影响结果。这个答案看不懂啊。这个后后面关于数据的注示啊,以及投票方案的制定里面, 呃,人家都有跟大家详细讲,当然大家如果这个呢看起来比较复杂一些,大家可能会听不懂,没关系啊,我在后面呢,我有一个汇总了整个这个关键信息,以及每一问里面我们可能要去注意的一些关键的鉴摩点和注意点,我一会跟大家去讲吧。好吧,呃,我们先来讲下这个思路啊。好, 第二问,我们就是做这样的一个交叉验证模拟,呃,其实我们问题一呢,现在已经得出了对不对?我们就是只是根据问题得到这个推断数据呢,去进行反式式的推理就可以了啊。行,我们第一步呢,我们该先做这个交叉验证的模拟,我们建立一个仿真器,然后我们的实验组啊,第一 就说针对于这个,我原来是百分制笔制的这个数据呢,我们去应用排名制,然后针对于原排名制的数据呢,去应用百分笔制啊这样的一个规则。 ok, 这个我们可以解答呢,是否有一种方法似乎比另一种呢更偏向于粉丝投票问题?好,那么关于第二个看一下 啊,就这个针对于特定案例的分析啊。好,那么前面一个呢,我应该跟大家讲清楚了啊,就是要去后面去做一个偏差度量嘛,就定义一个评委友好度的指标,然后去比较一下这两种机制下这种指标的差异啊, 来看一下是否是会存在啊,这个粉丝一边倒去覆盖评分的这种情况。那么另外一个,接下来针对于这个针对特定案例的一个分析,我们先去提取出来这些人的这个数据,然后我们集中在于以下他们在另一种规则之下的这个新生存概率 啊,嗯,针对于这个加入评委选择抛开倒数两对中啊,哪一对的额外方法呢?会如何去影响结果这样一个问题呢?哎,这里呢就是说关于这个评委拯救环节啊,这就这个条件概率问题就是假如说某个人在某个模型中啊,落入倒数两瓶里面, 并且他的评委分呢是高于对手的,那么假设他被救回来,回去分析一下这是否改变了最终的结果就可以了。那么这个问题二的鉴物术呢,是比较确定的,就说只要问题的数据生成好了啊,那么问题二呢,主要是进行统计和进行逻辑判断啊,思路是比较确定的,来看一下问题三, 问题三就是说使用我们的粉丝投票估算值数据呢,去开发一个模型,来分析各种职业舞者以及数据中可用的名人特征,比如年龄啊,行业啊等等这些影响,然后去分析一下这些因素呢,在多大程度上去影响了名人在比赛中的表现,以及他们以相同的方式影响,是否是以相同的方式影响了评委的评分和粉丝投票。好, 这个呢就是一个典型的回归分析和归音分析的问题,那么这里呢有两种方案,一个呢就是这种混合效应分析 好,我们可以把职业五指呢设定为随机效应,然后把明星特征呢设置为一个固定效应啊,然后呢给出具体的模型,我去分析一下啊,来看这两个方程的,这个评委和粉丝两个方程里面呢,系数悲叹的显著性和大小啊, 来看一下这个系统呢,在这两个模型中呢啊,它们的是否显著的这个问题啊,那么这个呢是我比较推荐大家去进行选择的啊,这种混合效应模型呢,是比较能够去啊,比较好的去处理面板数据的,比普通那种心灵回归模型呢是要好一点了。那么另外一种方案呢,就是这个随机森林或者是啊叉子 boss 啊,其实就是基于树的那些模型啊,比如角色树啊,随机森林啊,就是基于呃树啊,对这种模型 积极学习模型。那么这个呢,就比较无脑一点啊,应该大家大家做过数据分析的题目应该都懂啊,就是你直接把它导入进去,然后跑一遍,就可以得出每一个侧重对于结果的贡献度了 啊,这个呢,优点呢,就是我们能够很好去捕捉非现金的这种关系啊,就直接周谷会跑出来一个重要性的排行啊,这个大家做过数据分析类和积极学习的人都懂, 那么这个呢,就是缺点就是它的解释性能差一点啊,就是我们不能从内部的机理和因果关系呢去很好的解释啊,我们只是跑出来这么一个结果,就传用数据进行驱动啊,这个呢,我后续这样的方案我都去做一下吧啊,看一下哪个效果更好啊,当然目前我推荐的是这个,大家去选第一方案是核像也模型好, 那么最后呢,就是要去提出这个新赛制的嘛,对不对啊?提出抑郁症,每周使用粉丝投票和评委评分的这样的一个系统 啊,让这个系统更公平,或者是在某些方面更好,比如说让这个节目更刺激啊之类的啊,我们自己去选择一个目标,然后呢,哎,去提出一个新的系统就可以了。好, 这样呢,大家就比较自由了啊,有很多种方法,比如说啊,你可以采用加卷法啊,这个理由呢,就是说,呃,好处呢,就是我们可以兼顾名次和表现的差距啊,我们保证每一跳都有这个价值, 要么呢,我们就基于等级分的这样一个动态权重系统,哎,我们随着赛季的进行呢,评委评分的权重呢逐渐降低,然后粉丝权重呢逐渐升高,这样的话,只是大家越看越刺激了,越看越刺激,呃,我们的目标就是追求刺激,对不对?那么再就是啊, 我们可以结合这个评委拯救啊,比如说啊,我们的评委分如果说排名前三的话,那么本周啊,那么无论粉丝投多少票都不会淘汰,我们可以保证那些技术最好的选手呢进入决赛,并且呢同时呢剩余的名额呢交给那些粉丝去进行,我们这个投票就是兼顾了这个公正与这个观赏性 啊,这个呢,大家比较自由了啊,这个关于这个新赛季的提议,大家可以再去提出一些其他的方案,我这里呢也只是给出三种啊这个建议啊,那么在整体的建议上面呢啊,呃,我们大家必须要拿下分,是问题一和问题二,我们要去构建一个稳健的将这个蒙特卡洛模拟框架,去解决这个数据缺失的问题。 好,再一个就是我们后面会拉开差距的分啊,就是会让大家拉开差距的分,一个是问题一的不确定分,不确定性分析是比较重要的,然后呢,问题三的这个混合效应模型,这两个呢,我们在过程中必须要去展示非常漂亮的啊,这样一个自信区间图和系数显著性的这样的一个表格图啊。好, 接下来我给大家讲一下这个题目,我们的一些关键信息和雷区以及注意点,你们大家可以看到呢,这个题目呢,呃,这个数据的注视啊,描述,关于数据的这个描述注视啊,然后包括呢各种投票方案的势力,以及一些规则啊,规则,比如说呢他 啊,这个 a 值是什么意思啊?零分是什么意思等等这些东西,这个是非常非常复杂的,所以呢,我把题目中一些比较关键的信息和连续注意点呢给大家提取了出来啊,那么在视频的后面呢,我来相信大家去进行一个补充啊,防止大家容易踩坑的点。好, 首先是呢魔剑魔里面最容易出错的地方就是这个关于规则变迁的时间线,我们的代码呢,必须要能够根据我们这个赛季呢则自断的去自动切换它的计算逻辑阶段一就是这个排名制,它这个使用赛季呢,是第一赛季和第二赛季啊,这个逻辑呢是这样的 啊,排名制他们的淘汰规则呢?是这样的啊,我就不给大家多注注了吧,好吧,据说数值越大的排名呢越靠后,然后呢他数值越大的就会被淘汰,就这个投票排名制的同排名的制,这个题目里面的这个我后面也给大家讲了啊,后面也跟他讲了, 就说排名越大越靠后。好,那么这里呢我们要去注意一个问题,那如果说我们的总排名是平局怎么办呢?这个题目是没有说的啊,我们需要去进行一个合理的假设,这也是大家需要注意的个点,就是如果说排名出现了平局怎么办这样的一个问题。 好,那么另外一个就是基站案也就这个百分比值,这个呢是在第三赛季到第二十七赛季里面去啊,然后这里是他的这个排名的逻辑 啊,就是各自有各自在帮占比的这个百分比。那么啊,评委分是这样的,某选手的评委分,我们这个百分比的设定呢,就是说这个百分比的设定呢,就是说意思就是说啊,评委分的百分比,就是说某选手的评委分除以当中所有选手的评委总分, 当然了另外一个就是这个粉丝的这个百分比呢,就是说啊,这个选手的粉丝票数除以当中总粉丝的票数。好,我们它的规则呢,就是说 数值最小者被淘汰。接待三呢,就是说啊,从这个第二十八赛季到第三十四赛季,这题目是假设从第二十八赛季开始啊,就是具体的是从哪一个赛季开始的,是并没有说的啊,题目里面说的是假设哦, 那么这个呢,是重新回到了排名至区区三,咱们综合排名这里呢,关键差异呢,就是跟我们最开始的这个排名的这关键差异呢啊,就是有一个综合排名倒数两轮,这个选手呢会进入生死 pk, 那 么最终会淘汰谁呢?是由评委现场投票决定的,而不再是由综合排名决定的,能理解吗? 虽然在在我们建模里面会有产生一个影响,比如说在第二十八赛季到第三十四赛季的这个逆向推导过程中呢,如果说某一个人排名综合排名呢,是倒数第二,但他没有被淘汰,这是非常合理的,因为评委把他救了,他能理解吗? 好,那么另外一个问题呢,就是在我们数据清洗和处理方面会存在一些雷区。首先是关于零分的这个含义啊,比如数据中呢是零的,就代表这个选手已经被淘汰了, 然后呢评委人数的变化,有的时候呢可能是三个评委,有的时候呢可能是四个评委,在这个处理方面呢,我们就不能直接用总分了啊,我们必须得去归一化啊。再有个关于这个小数的处理问题, 包括这个 na 值, na 值呢代表的是缺席啊,这个评委或者说休赛周,这个呢,我们在主取出局中呢啊的时候呢,要进行剔除啊,最后呢就是多余一人淘汰,或者说无人淘汰啊,这只是我们相应的处理。 好,那接下来给大家讲一下每一问啊,我们前面的思路已经跟大家讲过了,我们接下来要讲一下每一问的这个注意的点,那么在问题意义里面呢, 前面的思路我们给大家讲过了啊,这点重点就在于我们如何去回答这个确定性的问题,那么有些中呢,这个评委的分叉是很大的啊,粉丝投多少票都破去改变它的结果,那么这种情况下呢,它的确定性是比较低,大家能理解吗? 那么另外一种呢,就是说评委分是比较接近的,所以呢粉丝投票的微小变化就会导致他们的排名会出现很大的变化,那么这种数据呢,就会意思就是说它的吸引力呢是比较高的 啊,这个答案应该能理解什么意思吧啊,就是假如说分差很大,因为咱们是通过这个评委分和排名去逆退他的粉丝投票嘛,假如他分差很大的话,那如果说你这个粉丝投票呢,多少都不改变结果的话, 你偷懒出来这个趋利性可能是比较低的呀,因为你任何值都可以嘛啊?你偷懒出来任何值都行嘛,你高或者低都无所谓的,那你的趋利性当然很低了,就说它的可信比较差啊。另外一种呢,就是说你这个评委分比较低的情况下 啊,他为啥变化就导致他排名逆转,那么这个时候我们再通过排名和评委分综合起来去逆推他的粉丝投票的话呢?哎,这个就是我们趋利性非常高了,大家能理解吗?啊? 所以这个这部分我们的衡量指标就是我们的可行结空间的这个奇迹,或者说我们的卡罗样品的方差啊,去看一下它方差大还是小好。然后针对于问题二里面呢,我们的核心 写就用我们去我预测出来这个票数呢,去套用不同的规则,然后呢去针对于具体的案例进行分析啊,比如针对于这个人,他在百分比之下呢,是赢了的啊,我们要去计算一下,假如说他采用了这个评委拯救规则,他会不会在半路就被评委给淘汰掉, 哎,那么再比如说这个第二个赛季的这个人,他在排名之下是亚军,那么假如说换成百分之十的话,他的这样低的分数呢?会不会被这个粉丝投票给拉回来?大家能理解吧?好, 对着问题三里面的这个影响因素分析里面啊,我们前面给大家讲过了,我们要去做这个回归啊,和这个相关性分析, 这里我有这么几个关键变量啊,首先是这个职业舞者啊,这是非常关键的,因为有些职业舞者呢,他的粉丝是非常多的啊,他们能够去带飞队友去演演投票, 我们需要去把职业舞者呢作为一个分类变量啊,进行编码来,或者说作为一个学习效应啊,一直说三四,最后加一个,在数据表里面加一个判定啊,就是看看他是否是职业舞者这样的个灵异判断啊,可以作为一个变量去导入进去, 或者说把它作为一种学习效应进行考虑。哎,那么另外一个就是他的职业归类,比如他的职业呢,如果说是什么球员呐,什么真人秀明星呐,什么老牌演员呐,哎,这个呢,我们也要把它作为一个变量考虑进去, 能理解吧?就在我们这个分析影响因素的时候,我们哪些变量都需要去进行考虑,我先给大家讲一下啊,关于这个职业问题,我们也得考虑进去。 那么再一个呢,就是这个年龄问题了啊,啊,比如某的老某些老人呢,他可能会有些情怀分啊,他的粉丝票呢,可能会比较高一点啊,那么比如说年轻人呢,可能会呃,票都好,那么就偏位分比较高。哎,这个呢,我们只是最开始的这个初识判断啊,只说具体有没有关系,我们就是看后面的那个回归和相关性分析了吗? 对不对?在我们最开始的这判断的时候呢,我们也先研究一下,大概哪些因素呢,可能都会产生影响,能理解吧, 而且我们在这里呢,不仅要去分析这些影响因素呢,对于结果的影响,还要去分析对于评委分和粉丝票的影响啊,因为这个题目呢也没辙,问了他们对于评委和粉丝的影响方式呢,是否是一样的? 好,那么大致的这个 ct 幕完整的思路呢?和一些啊,这个在我们纠结过程中啊,要去注意的一些关键的信息和雷区啊,以及一些注意点呢。我这个视频呢,应该都跟大家讲清楚了, 那么这个 c 级目呢,完整人生的问题,现在代码和结果呢,预计会在明天就是一月三十一号的中午左右就会更新完毕,那关于这个完整成为的说明,大家可以看这个视频的评论区。好, 稍后呢,我会再跟大家去讲一下这个 a 级目完整的这个思路啊。呃,我们这次呢会选择 a 级目和 c 级目呢,两到几目啊会同时进行,那么 a 级目思路呢,我一会会再出一个视频,那么这个视频呢啊,大家也可以转发到你的队友群里面,和你的队友呢继续商讨一下选题。 呃,以及呢,假如你们队伍选择 c 一 梦的话呢啊呃,给你们队伍呢啊,转到你们队伍群里面啊,可以去一起看一下,你们在休闲课中呢,可能容易踩了一些坑个点, 呃,包括这个题目的赛前思路,大家都可以去看一下。呃,希望能够帮助到大家啊,呃呃,希望大家呢都能够获得满意的奖项啊,谢谢大家。

好,大家好,那这里是本次美赛 c 题目啊,第一问完整代码以及结果的讲解视频, 那本次这个代码呢,量是非常大的啊,因为这个 c 题目呢,数据库处理啊,包括后面这个实际求解啊,这个步骤是非常繁琐的啊,我收获都跟大家去讲清楚啊,包括这个数据处理之后什么样的样子啊,后面就求其结果,因为我们要得出那个投票数嘛,啊,就这个观众的投票数 啊,我都会一一的去给大家展示啊,请大家务必有耐心的把这个视频呢仔细的去看完啊,那目前第二问代码也是已经完毕了啊,等我后面把三四问全部解决完毕之后,我再给大家录一个完整代码的讲解视频吧。好吧,那么这个视频呢,就先给大家讲一下这个第一问吧。呃, 还有就是这个 a 题目啊, a 题目呢,第一问的代码呢 啊, a t m 这个完整代码我也是已经完成了。呃,一会我会再录一个视频给大家讲一下这个 a t m 的 代码,好吧,好,那么这个 a t m 和 c t m 完整原创论文以及相应代码和结果的说明呢, 大家可以看这个视频的评论区啊,我们预计会在明天,也就是一月三十一号的中午左右就会更新完毕这两道题目的完整论文啊,即刻的代码。好,那么废话不多说,我们来看一下这个梅赛 c t m 的 第一问。呃,题目背景 好,包括这个思路呢,我就不用再给大家去多说了吧,因为我前面这两个视频呢,都跟大家讲过了啊,大家可以继续看前面讲个视频,我就直接从代码开始入手了,好吧,呃,首先我们带人第一步首先要去处理这个数据,我们可以看到呢题目给出我们这个原始的数据呢, 他这个非常非常长的这样一个宽表啊,什么叫宽表?就是他很宽,就是他这个宽度呢?大概是有 这个五十三列吧,应该五十三列,然后呢他这个行数一共是这个四百二十二行,然后包括呢这个题目后面有很多的关于这个数据的一些描述啊,包括呢这个数据的一些注示啊,比如说 n a 指是什么意思,那么进零分的是什么意思啊? 啊?再比如说一共矮有四位评委啊,然后各种周次啊,反正各种中东西啊,那么这些呢,都是我们在数据处理过程中需要考虑到的东西, 能理解吧?啊?当然我们这个数据处理呢,在第一步的时候,我们最重要的是要把这个数据呢这个官表呢处理为一个适合我们建模的这样一个长表的格式啊。然后在这个处理为长表的这个格式的过程中呢,我们再去把每一个变量 啊,每一个数值啊,包括什么空值啊,零啊, n a 啊这些呢,都做统一的处理,能理解吧?好,我们来看一下这个具体的数据与处理的过程。 呃,还那句话啊,这道题目呢,还是比较复杂的。呃,目前呢,也可以看到网上各种满天飞的什么完整的每一问的代码呀,思路什么的都出来了,我只能说大家 见仁见智吧。啊,就是你这么快的速度,要是把每一问的代码和结果全部都得出的话,那这个质量你可想而知吧啊,总之呢,呃,我只做好我自己的这个代码和结果啊,呃, 好,大家自己去看一下我这个代码就知道了。好,我们来看一下第一步,呃,我们把这个数据呢先上传到这里啊,这是题目原始的这个数据 啊,这原始的数据,我们首先呢第一步先去读取数据,那么这对于原始数据数据中呢?啊,还有这个 n a 的 这个字符串的我们进行处理,然后呢清理列名,去除掉可能会有的空格,然后呢统一进行小写啊,这是为了方便我们后去读取列名, 接下来我们要去解析他们的淘汰周数,那么关于这个思路的方面呢,我们前面就免费思路的原因给大家讲过了,就是我第一问都用的这个模型呢,是这个 mcmc 啊,这个模型这个方案。那么在后面我不是给大家讲了一个这个 每一问的这个关键信息和一些雷区和注意点吗?啊,包括这个阶段一怎么处理百分比置,然后阶段三这个混合之家评为拯救, 然后在数据惊喜中的一些雷区我也给他讲过了。呃,这个呢,大家自己去看我之前的那个数字讲解视频就可以了,我在这里就不多做赘述了。好吧,就顺着代码去跟大家讲吧。总之第一问我们的目标不就是通过题目之后给我们的啊,这个他是否淘汰以及评委的 啊,这个评分啊,包括一些其他的各种数据来去推断出来,他最初时的就是反建构出他最初时的这个粉丝投票数嘛,对不对啊?这是题目要求我们的第一问要去做的这个事情,看一下题目第一问估算的粉丝投票数,好吧, 好,来看一下数据处理。呃,然后呢,接下来下一步呢,我们是要去解析他们的淘汰周数了,我们需要去知道每一个选手到底是在第几周被淘汰的,或者说他是进入了决赛,那么假如说他是没有结果的话呢,那么他就是说啊,坚持到了最后 啊,这是第一个处理,那我们把决赛的处理呢啊,决赛的这个选手呢?进行一个处理啊,就是说假如说 是这样的,那么他们说明他们参加了所有周四啊,我们可以给他们很大的一个数字,一直去表示他们直到这一季的最后一周他都在,那么这个最大数字呢?我就设置为九十九了啊,大家也可以设置为其他数字都行了的啊,都行的, 这个呢,我,我无所谓的,就是你随便设置一个比较大的数字啊,一一百多也行,总之代表就是说他们一直是重活到了决赛,能理解吧? 好,然后接下来是应用这几级函数,然后我们构建这个长格式数据,去构建这个长格式数据表,我们获取一下它的最大周数,然后提取它所有可能出现的周数, 提取完之后我们去构建这一周这个评委翻数的列名和列表。那么我们这里是假设最多有四个评委,为什么要这样假设呢?因为题目呢,原初始的这个 数据说明里面我们跟我们说过了啊,就是这个 n a 值,通常用于一个,就是说第四位评委的分数啊,假如说这周没有第四位评委,就是一般有三位啊,就是意思就是说最大就是四位嘛,这么个意思。好, 显然在这里我们假设是最多有四个评委,然后提取这一周的分数,然后把这个 n a 值啊和控值呢全部处理 过滤完了之后呢,我们只在这一周有有效分数时候才记录该条数据啊,这周呢,我们就把那些被淘汰之后的周次,我们就自动过滤掉了,因为这个被淘汰之后的周次呢,他的得分都是零嘛,对不对?好,那么接下来就是个长表,他都包含一些什么样的这个 变量啊?一个是他的赛季,一个是他的这个周数啊,然后包括有这个原始列吧,他可以查啊,评委的总分,评委的数量,他是三个还是四个,有的时候可能是三个,有的时候可能是四个,然后呢?这个是本周 啊,由于结果被淘汰的,然后这个全居记录何人该时淘汰,然后呢?这是一个最终名次,这是一个预处理之后的数据啊,这是最终整理出来这个场表 啊,一共就这么几个变量,对,淘秒呢,一共就是两千七百多。行了。好,然后我们去提取它的技术信息表啊,用于这个我们的第三问,这个建模啊,我们一行这个处理就可以了, 处理完了之后呢,我们做一个比较简单的一个结果检查,然后保存这个结果就可以了,我这个结果呢,是保存为了一个域处理后数据啊,那么大家大家可以继续改这个表名啊,这我就不用读,跟大家读说了吧。啊,好, 呃,我们检测的最大周数呢,是一到十一周这个范围,假如呢,我们数据处理之后呢,一共是两千七百七十七行,然后一共是九列包含的总赛季数量呢,一共三十四个赛季嘛,根据这个题目来说, 然后我们检查两个具体的例子吧。啊,好吧,我们来看一下题目给我们的这几个例子, 这个结婚呢,是给我们了一个第一季第四周啊,这几个参赛者,他们最终的这个排名情况啊,排名情况和他们预估的这个粉丝投票数啊,我们就根据这个例子来做一下,来看下代码, 我们可以先看一下这个 s 一 啊,被淘汰的这个人啊,那么他呢是在第四周就被淘汰了,对不对?好,我们来看下代码, 所以呢,他就应该就是说运行完之后呢,他应该被标记为在第四周是淘汰的。其实大家可以看到呢,这个 week 四啊,就是第一赛季的第四周,那么这个人呢,就被标记为淘汰了,后面是个处,对吧?那么另外一个例子就是 s 一 的这个冠军 啊,就是这个评委评判排名的啊,这个第一哦。啊,他就是呢,一直没有被标记过淘汰啊,一直没有被标记过淘汰。好, 那么整个这个数据处理步骤就完成了,然后呢我们检测了一下这两个视力啊,也是正常的合理的啊,但是你们大家也可以去踩,就是说啊,使用一些其他的例子去验证也可以啊,也可以。 ok, 那 么在数据处理全部完成之后呢,我们就要去做这个 啊,实际的我们估算他每一个周四中产生的这个粉丝图飙数 啊,那么这部分的思路呢,我前面也给大家讲过了啊,就是我这题采用的这个模型呢啊,我最终采用的这个方案的是这个避风啊,也是个 mcmc 啊,就是求粉丝投票的这个概率分布情况。 好,我们做一下模拟,那么这部分的核心代码呢?我就不给他展示了,这个核心代码呢,也比较长,呃,也很难,那么这个呢?呃,大家都能拿到我这个论文和代码的人,自己去看就可以了。好吧,呃,我这我就不多赘述了,因为我要保证这个限量,我就给大家展示一下最终这个结果啊,那么最终这个结果呢,我们模拟完之后 也可以得到这样的一个结果,那么这个结果呢啊,我们可以做一些结果分析啊,这个非常非常合理的。然后这里呢,我们求出来其实就是他这个占比,就是投票的占比,大家能理解吗?啊,这是一个投票的占比, 因为我们这个种票数呢,他是不定的啊。这个是还那句话,这个题目在求解决过程中有许多我们需要去注意的点,大家千万不要去忽略啊,去瞎写,哎,记住, 可以看到就像网上各种满天飞的各种思路啊,什么代码视频啊啥的,可能有的很多人都没有讲到这个问题,这是个总票数呢,他是不定的,这是未知的,所以呢,他只是选择一个假设值去产生最终的正确排名,而且呢,这个总票数呢,是我们永远无法得知的,大家能理解吗? 因为我们这个总收视率的是不定的啊,你,你这个总票数可能是,呃,一百万,有可能是一千万,这个没有人能知道,没有人能知道,我们在书学方面成层面的 最多最多就只能纠解出来他们的投票占比,能理解吗?啊?所以在纠解完这个之后呢,我们得到了他最终的这个结果啊,保存为这个,我们打开给大家看一下这个结果这个结果表格,那这就是他们最终得到这个结果表格啊。我们反推出来这个粉丝投票数, 那么当然了,这也就是我们得出来的这个反推出来的是粉丝投票的占比。投票的占比,那有人要问了, 可是人家题目要求的是让我们给出他们的粉丝投票数呀,对不对啊?人家第一位让让我们给出他具体的粉丝投票数呀,我们估算粉丝投票数呀,包括我们第二问,第三问也都是要用这个粉丝投票估算值和其余数据来计算呀。那,那那以现值投票占比怎么办呢?啊?没关系的,没关系的,这这个呢很好处理, 首先代码里面呢,我们再加入这么一段,把这个估算的份额呢去转换为具体的票数就可以了。那么怎么转换啊?其实就是根据它们的舒适率假设一下,假设一下能理解吧, 那它这个,呃,一般来说啊,这个电视节目呢,都是早期赛季是比较火爆的,那么后期是略有下降的,是我们可以设定为啊,早期的这个 s 一 到 s 十是一千五百万票,那么 s 十一到 s 二十是一千万票,那么后面的这些数是六百万票,那么当然在这个数值大家可以自己去先假设, 而且呢这个数值怎么假设呢?跟我们后面两三位的二三位的求解呢?是没有关系的,能理解吧?就后面二三位呢?有人可能要问了,那这个你假设为这么个票数,那么前面赛季是一千五百万票,后面是六百万票,会不会导致我们第二三问求解的时候,出现这个求解不一致的这个情况呀? 对不对?这个是完全不会的,因为我们求解一个人淘汰呀,什么排名啊?这情况呢,都是在单个赛季内去完成的, 不存在说是你这一个第一个赛季跟第三十四个赛季进行对比,这个我情况的是不存在的,那样理解吧。啊,所以我们都是在这个单个这个赛季里面循行求进, 所以呢,当然你们也可以设置为 s, 一 到 s 三四都是稳定的,都是一千万票也行,都行,这个呢,我们只是想把这个投票占比呢去转化为他们的 绝对票数而已,这个呢,其实意义也没有多大,包括这个 a 多少万票,你们给黑市进行修改啊,拿到代码的到时候也可以自己去进行修改啊,我这里设置一千五百万票,你刚刚可以把它设置为你一百五十万票啊,这个这个你多减个零也行嘛。啊,这个这个影响都不大的, 因为我们题目上面给出这个意思呢,哎,他也这个票数呢,也是一个估算的,这个估算的好,我们转化完之后我们就可以得到这样一个结果,我们把这个结果打开给大家看一下啊,那这里就是转化之后的啊,这个总的票数我们拖到最后,我们也给大家看一下 啊,那这里就是最后的这个这一点啊,就是他们的这个投票总数了啊,啊,投票数,这这一点就是他们的投票数。好, 那接下来啊火美这个代码呢,就是做这个一致性的检验和确定性的检验了吗?对不对?这也是题目明确要求我们的,其实我们要去看一下啊,他这个一致性的度量啊,是否是一致性的,然后呢再一个就是呢,这个投票总数呢,是有多大的确定性? 这个一致性度量呢?其实就是说我们这个求解第一问这个模型呢,是精准还是不精准啊?你要就一致性的很低的话,那证明你完全是错的嘛,你投票总数就关键是求解错了的, 就你根据这个投票总数我现在去计算啊,他还跟咱们的淘汰这个结果是完全一致的,比如说我们第一问的这个模型呢,是完全正确且合理的啊,这就是一致性度量的意思。另外一个就是说这个投票的总数呢,有多大的确定性 啊?就这个训练型呢,对于每一个参赛者,每一周或者是总是相同的,是否是总是相同的啊?提供我们一个训练型的度量,这个呢就是我们这个思路得兼独厚的一种优势,因为我们采用这个 mcsm 模型呢, 我们的确定性读量呢,就直接通过我们后延风格的这个标准差和执行区间呢,就会完全能够就直接回答其波中说提出的这个确定性的问题了。哎,所以这也是我为什么最终舍弃掉了其他两个方案。其实我们这个呢,在回答确定性上面呢,是一个非常非常好的一个顶级方案。好,我们来看一下代码, 那么这部不带马的实际确定性度量和一致性检验的这个核心结构,我就给大家展示了,我来开案就用这个结果吧。好吧,那么我在这里呢,我是哎 啊,就是查看了两个人啊,一个是第一个赛季的这个和第一个赛季这个做了一个一次性检验和确定性的毒粮,然后做了一个二十七第二十七个赛季的这个一次性检验和毒粮,那么我为什么会采用二十七赛季呢?啊?这也是根据提议 啊去确定的,就在这个提议里面呢,他是从二十八赛季不是开始变这个规则了吗?啊?二十八赛季开始变规则了,这是因为呢,我们前面中期的这个到二十七赛季发现这个可能啊,这个规则可能不太好或者怎么样的翻开,二十八开赛季不是变了吗?而而且这个二十七赛季呢,不是冲见出现了一个争议吗?就这个人 啊,可能就是因为它出现争议啊,所以最终导致二十八赛季这个规则改变了,所以我们呢最好呢是把二十七赛季呢啊去做一个展示啊,当然你们采用其他赛季也行啊,也行,那我这里给大家展示一下这个第一个赛季的吧。啊,二十七赛季我就给大家展示了,那我这里就会生成一个第一赛季的这样一个趋势图 啊,这就是一个不确定性范围的这样的一个呃呃,图啊,然后这里是他们的不确定性的热力图啊,这是他们的不确定性的热力图, 颜色越红,那就是表示他越不确定啊,那么颜色越淡呢,就是表示他越确定啊。大家这就是完美回答了这个节目中所提出的这个问题啊,一方面我们的一致性呢,全部检验完毕了,再一个呢,我们也就确定性 啊,我们给出了注量啊,也计算出来了啊,然后呢,对于每一个参赛者或者每一周出是否总是相同的,那当然不相同了吗?对不对?那代码这里面热力图都已经给出了吗?每一个这个人啊,每一周他的这个确定性的注量都不一样,我们热力图也获取出来了, 那就完事了啊,二十七赛季的我就不给他多展示了。好,那么第一问完整的这个代码和节目呢,大致就是这个样子啊,我们把第一问的所有决定目标全部都学完毕了,对不对?再来回顾一下啊,这个我们也纠结完毕了,这个也纠结完毕了,这个也纠结完毕了,全部完成了。好吧,呃, 那再给大家说一下,到时候大家拿到我的这个代码和论文的人呢,这个所有代码图片的颜色也都可以进行修改啊,那么关于这个代颜色怎么修改,我到时候在代码里面也都会有注置, 大家到时候拿到我代码和这个代码操作视频的人呢,自己去看就可以了。好吧,那关于问这个完整成品论文和代码的书们,大家可以看这个视频的评论区。 呃,我预计会在明天中午,也是一月三十一号中午左右就更新完毕。呃,美赛 c 题目啊,完整的原创论文签代码和结果,那么到时候呢,也会有一个完整代码和论文的详细视频,那么这个视频呢,只是给大家讲一下第一问, 希望能够帮助到大家,特别是关于这个数据处理部分。呃,希望能够帮助到大家吧,好吧,那么就说到这里吧,呃,谢谢大家。

然后现在的话,美赛的 a 题到 f 题的所有的题目的中文翻译版已经出来了,先大致看一下,然后等下我给大家更新每一题的一个选题思路分析, 以及怎么解配套的代码使用情况啊。现在先看到美赛的一个 a t, 它是一个智能手机电池的放电建模,和以往的 a t 一 样,还是偏数学肌底类的。 这类题目的话一般难度的话是比较大的,大家选择 a t 的 时候要注意 连续时间模型,然后自己要去收集数据集 这个 pdf 要注意啊,这个总数的话是不超过二十五页的,这个都是翻译后的,大家可以看原来的那个英文版, 然后看一下这个 b t, 今年的 b t 是 一个利用太空电梯系统建立月球执迷的。这题目的话都还是比较新啊,和今年的那个股票里面那个不是很火的吗?那个商业航天啊,都紧密挂钩啊。 嗯, mcm 机构, 你的任务是利用数学模型来确定是从二零五零年开始建造,容纳十万人的需要的材料运输成本和相关的时间表。 然后将现在在那个太空电力系统的三个年港口,然后从选定火箭基地发射的传统火箭进行比较。这是对你建立模型的一个要求 啊,仅使用太空电力系统的三个港口啊,这些,这些是运输系统没有完美的运行状态时考虑的一些情况啊,系绳摇晃,火箭故障对你损坏, 然后再写一封营业 执照,你里面有 ai 的 话,也最后要附上一份使用报告。 而今天的 ct 也是一样的,紧扣商业航天里面的这些内容与核心相关的数据。 嗯,这这类题的话在常规的话以往来看就是数据量比较大,它这个 ct 单独是给了你一个数据表格的。 啊,这个它翻译有点问题,这个其实是明星,明星的这些题目 看这是统计,这个题的话是对你那个处理数据的能力要求较高,你看它 ct 的 这些数据都是公开在这里的,自己要去整理一下 与星共舞是英国的那个节目舞动奇迹里面吧。 啊,第一题是如何管理体育运动,体育商业里面的内容, 一题是被动式太阳能遮阴。 啊,这题目介绍的话就介绍这里,这中文翻译版的话我也全部都给大家整理好了,后续思路一并发给大家。大家直接在视频下方那个企鹅群里进去领取就行,包括我前面发的赛提助攻资料。那这个 fg 是 否要发展全人类人工智能 这一个收集讨论? 嗯,好,等会再给大家更新思路。大家题目的话先看着这里。

大家好,那么本期数学建模美赛 a 题目和 c 题目的完整论文呢啊,在这个一月三十一号就已经更新完毕了,那么当时呢我是已经发布了这两道题目完整论文以及相应的代码和结果的完整讲解视频。 然后呢明天早上也就二月三号的啊,早上呢这个比赛就要结束了,呃,在最后呢再给大家讲一下一些注意事项。呃,首先是呢,这个 我发给你们的是这个完整的原创论文的啊,以及我所有这个代码和结果的打包,那么已经拿到我这个完整成品的人呢,请务必把这个啊我发给你的降重操作复现视频呢, 以及那个代码速度附件视频的幺五把它仔细的看完。然后呢把降重说明视频里面的所有的点呢全部都落实到位啊,包括我整个这个论文里面呢,有很多个黄字提醒啊,告诉大家一些获奖点的说明啊,包括一些降重的说明,那我这些点呢也希望大家都能够落实啊,已经拿到我一个论文呃代码的人啊,希望你们都能够落实 关于这个完整成品的说明呢,大家可以看这个视频的评论区。好啊,就如果你现在还没有这个完整论文和代码的话,可以看这个视频的评论区呃,然后整体给大家讲一下吧,首先是这个比赛呢,是明天早上十点啊,就截止提交了,那大家呢千万不要这个卡点去提交啊,最好能够提前呃两到三个小时就去上传 啊。呃千万不要注册卡点,因为往年呢美赛有很多个人啊,就是注册提交的时候呢啊,由于注册提交的人太多了啊,让我卡住啊,或者说上传不上去啊,导致注册提交失败,然后呢说的兴趣全部白费了,那么这是大家要注意的第一个点啊,关于提交式时间的这个点。好, 再一个呢,说的就是关于美赛这个论文的篇幅问题,那么美赛论文呢,限制一共是二十五页,这个二十五页是包括副路的,那大家可以看到呢,我做的这个论文呢 啊,他这个页数是很多的啊,这个 c 题目呢,是一共是八十二页,然后 a 题目呢是七十页,那么为什么会篇幅这么长呢?主要这里面有大概十几到二十页呢,是提醒大家如何去进行修改成书,以及啊复现,包括获奖的树名的黄词提醒啊,大家可以看到前面的十几页啊,包括后面的这些黄词提醒啊,都 是啊,以及论文中呢,我也有很多个黄提醒,因为我必须要照顾到大家每一个人的水平,大家能理解吗?所以我必须得事无巨细的啊,把这个结果,那么这个结果呢,就体现出来,什么东西我都得给大家分析到位。 那么在大家最后的这个论文里面,大家当然要进行一定的删减啊,包括我放这些论文图标也都放的比较大,但大家可以把它缩小一点,然后比如说做成呢,呃,两个这样一排,这样的一个形式能理解吗? 然后包括里面一些分析性的文字,呃,求解步骤啊,大家也都可以去进行删减,就是理论分析部分呢,没有必要这么多啊,我之所以写的这么详细,是害怕有的人看不懂啊,因为每个人队伍属性都不一样,所以我呢,呃,就把它写的太详细一点,这个大家自己去删减就可以了。总结中的论文篇幅一定要压缩在二十五页左右 呃, a 级木这个论文呢,页数稍微的少一点,一共是这个七十页左右啊,七十页。那么大家呢,也是像我刚刚说的一样,包括论文中一些图表的展示,呃,我展示的可能比较多,你们可以稍微的少展示一点啊,包括这些论文的里面的 啊,各种描述性的话呢,大家也都可以进行压缩,最终形成的这个论文篇幅呢,也是二十五页左右啊,这是其中第一个点有个大家去提醒的。 再一个就是我希望大家之后在写作文的时候呢,我不是要告诉大家要布置这个流程图啊,这些东西吗?啊,这是咱们美赛论文里面的一个,非常大家分享。然后你们在布置这个流程图的之前呢,请务必把这个论文整体的逻辑呢去把它盘到位啊,千万不要犯一些逻辑的错误,就整个这个论文呢,它在写成转壳啊,每一步我们要干什么?那么这步我们为什么要干到,下一步我们要做些什么东西 啊?那么这些步骤都对应了原题目中的哪些问题?第一点呢,逻辑肯定是很混乱的, 关于怎么去盘这个逻辑啊,那么大家可以去看我之前发布的这个 a 题目和 c 题目完整代码和论文的讲解视频在里面呢,我是仔仔细细的跟着大家对到的原题目,从第一问开始,把整个这个论文的逻辑都给它盘到位了。 呃,然后呢,我之前不是这个,因为 c 题目实在太复杂了,所以我给他准备这样的一个 word 文档,就是关于啊,这个每一步的这个子问题都有哪些东西。因为这个原题目呢,确实是。 嗯嗯,他这个一个大的问题里面呢,嵌套了很多个小的问题啊,这个大家看也太复杂了,你永远不知道你现在到底哪些子问题检查清楚了,哪些子问题又没有检查清楚,所以呢,我是给大家盘点这样子问题,那么大家可以对照着这个子问题的文档呢,哎, 去看一下你们最终形成这个论文啊,或者说你对照着我的,我给你们发的参考论文啊,去对照着一下。那么在原来的参考论文里面呢,我是分了很多个二级标题和三级标题,那么这些二级标题和三级标题呢?哎,其实就是 对应于这些所有子问题的解答啊,这个逻辑呢,我是已经盘的非常到位的,大家可以看左边这个导航栏。呃,你看啊,前面的问题逐出分析模型也是否什么没有的,不跟大家说了啊,中间重点就是中间这个模型仙女球技,大家可以看呢,问题也模型仙女球技里面啊,我分这样的几个标题,这个可能大家看着有点看不太清楚,我给大家把这个目录打开吧。好吧,我再给大家盘一遍。 ok, 那 么整个这个目录是这样的啊,我们第一用呢,首先是建立这个基于贝斯推断的粉丝投票繁衍模型,也就是那个 mc mc 模型啊,我前面也跟大家讲过了,那么建立完这个粉丝繁衍模型之后呢,我们去实际的指示我们的算法。 呃,这里面呢,包含的是四个大的步骤,首先是进行预述,预处理和规则的映射,然后呢,我们实际去跑这个蒙特卡路模拟的循环,针对每一周,然后补发结果,之后我们去做这个一次性检验和剧烈性度量啊,这也是题目要求的。然后我们把这个图标送掉呢做映射,因为我们轮廓区里出来的只是这个图标的比例嘛。然后到轮廓第二部分呢,我们做这个反射式的模拟框架和敏感线的分析, 哎,这是他的理论建模步骤啊,弄完之后呢,我们就去做实际的模拟算法和结果,得出这个法式之的模拟结果,这也是题目要求的。然后题目要求不是让我们把那几个案例分析一下吗?哎,我们把题目要求的那几个正义正义的案例分析一下,再一个呢,题目要求说,哎,如果有其他案例的话也可以分析,我们在这里加了一个标题,是关于其他案例去分析, 然后是加入了这个评委,拯救极致的啊,电路模型啊,就说加入这个评委整顿之后之后会怎么样?那我们把它加入进来啊,然后给出它的算法步骤和它的修剪结果,之后呢,是关于这个赛制的苹果模型,他也说呢啊,这个你介不建议用什么赛制查的啊?那么在这里呢,我们建立了个多目标的帕里克优化,给出了最佳的这个赛制, 然后问题三是让我们做那个影响的分析,哎,我们这里呢先做描数据的描述性统计,从整体上去把握这个数据,然后我们做只有数据的预处理和特定的工程,哎,然后我们建立了一个两阶段的绩效归因模型,来去回答题目中的这两个问题,他看一下有回答关于题目中的 这两个子问题,一个是职业舞者与名人特征的影响,一个是呢对于评委或者粉丝的影响差异啊,在这里就对应于这里的一个是精准期望的回顾模型,一个是啊,这个职业舞者的向东模型啊,最后给出他们的球结结果。那么最后疑问呢,是让我们给出几种,呃,评分系统的优化 啊,能提供什么方案?那么我在这里呢是提供了三种模型,一个是报准分的融合模型,一个是两阶段生成的博弈模型,一个是实变动态权重模型。那么大家在最终的融里面呢,是不需要把三种模型全部包括进去的, 你们只挑选其中的一个或者两个去展示就可以了。假如说你最后论文篇幅特别长的话呢,你只保留一个就行了,假如说最后还留点余地的话啊,就还没达到达到这个二十五页的这个篇幅的话,那么你们可以保留两个,不要三个都保存。好吧, 还那句话呢,就是因为这样,所以呢我最终的论文篇幅呢,才会这么长,就有真的八十页的这个篇幅,因为呢包括后面这个最后一问, 呃,能够提出什么评分的这个方案的话呢?呃,我也是给大家提供了三种方案嘛,所以这个论文篇幅当然会很长了,好,那么这就是关于这个 c t m, 呃,然后包括这个代码啊,我给大家讲一下,就代码的操作复现识别,大概大家应该都已经看过了,然后关于代码中间格式化的图片啊,大家能看到这个格式化图标, 呃,大家要注意呢,我们说的是这个美赛啊,所以在最终的论文里面不要出现任何的中文,所有东西全都得是英文, 那么包括这个格式化的图片呢?我当时为了大家,为了避免大家看不懂啊,这个图片到底在干啥,我用的其实是中文,那么在这个格式化图片的这个标题啊,啊,这个东西呢,大家也都可以去进行修改,你们把它改成英文就可以了。标题怎么去改呢?这个很简单了,哎,你看啊,这就是他的这参数啊,参数标题没有啊,你可以把它调成英文就可以了,随便把它调成一个英文,把它删一下,你随便打个英文就可以,能理解吗? 好,这我就不用不用给大家多说了吧。好,然后包括我这个代码书的附件视频里面给大家讲过了,这个图片的颜色可以进行修改,大家也要不要忘记进行修改,好吧,为了避免这个差错问题, ok, 然后就怎么这个论文呢,那个降重复现的操作复事情视频呢?大家一定要去严格的落实啊,把这个降重做到位也可以了。 呃,好,然后这个 a 级木的这个论文的逻辑呢?没有那么多,呃,我给大家讲一下啊,这个整个逻辑吧。 呃,那在这个问题里面呢,我们显然是啊,建筑理论模型,也就是这个电效等电池的等效电路动力学的项目问题啊,所以说我们要得到这样的一个连续时间状态的空间系统啊,是一个藕合方程。 然后题目目的里面的要求我们去做一些数据的收集啊,但是呢,我们不能用什么黑箱啊,预测啊,就是不能用数据去用的模型,我们找的这数据呢,只是参数选择日期呢,我们就用的是选举指标和他的相应的参数准备,那我也就参数呃,我都是有相应的参考文献对应的,那么这个在目录里面也已经标注了啊,打开之后呢,自己在目录里面再去标注一下就可以了。 然后问题二里面,我们是先去建立这个马克夫乔治蒙特卡罗模拟模型啊,然后我们给出了这四种因素啊,就四种场景,我们去跑模拟,一个是初尺电量,一个是电池监度,一个是环境温度,一个是载的强度,然后我们给出他们的模型性能的评价啊,模型性能的评价。然后呢我们 问题三呢,是做这个灵敏度分析嘛,我在这也是做了两种,一个是局部的灵敏度,一个是全局灵敏度,然后呢给出他们各色结果啊,然后问题四里面 啊,他一个是这个用户行为的评估模型啊,就说什么用户行为能好一点,另外一个就是这个主动控制的策略模型,就看一下这个题目里面啊,一个用户行为一个是怎么样能有一个更好的省电策略,这也在最终的这个 论文里面呢啊,我们实践的这两个模型之后,让我们给出他们的实习结果啊,给出他们用户行为的策略评估,以及操作系统管理的策略分析。那么在最后呢一幕还告诉了我们啊,就是关于这个电池老化的问题,以及如何去推广。那么这两个标题呢,大家可以写的简短一点,但是千万不要把它省略,否则呢你这个论文呢,呃,就把人家原题目并没有完全解开 完毕啊,捷达完整好。呃,至于这个 a、 d、 m 的 代码呢,我就归大家都注出了吧啊,还是跟 c 题目一样,包括一些格式化图片的这个颜色呀,标题啊,大家不要忘记修改就可以了。好,那大概就是这么多吧。然后呢再给大家讲下最后的啊,就是关于。 呃,首先是关于这个副路问题。呃,目前呢,美赛的物展论文基本上都不粘贴副路了啊,因为这个二十五页确实不够用。呃,美赛呢是认为这个副路的业主呢,也是算入这个总业主的,只是那个 ai 的 评估报告呢啊,这个不算入业主而已。所以呢副路一般啊,基本大家都不粘贴了,而且呢评委基本也不看副路啊。呃,美赛的这个评委呢,基本上都是只看这个整体的论文, 那么还有一点就是我跟大家讲过的啊,呃,我在前面这里有一个视频,叫做一小时带你疏通啊,这个说行不行?在 那么大家提交之前呢,可以把这个视频再去看一下,那么在这里面呢,有几个获奖点的出名,大家可以读到最后面有几个获奖点呈现几下的一些句子,我们可以直接去抄里面啊,比如说我们到时候也可以写过程中呢,不断是要去中,这里有一个实战获奖点的出名,大家把这个仔细去看一下。呃,我在这里给大家讲了几个我们最终论文获奖的需要关注的点,一个是关于 java 的 书写, 一个是关于论文中一些图片的绘质,特别是关于流程图的绘质。那么最后呢,一个就是关于排版的问题。呃,这三个点呢,我希望大家都能落实到位啊,去提高大家的获奖概率,那就说到这里吧。呃,关于这个完整出名论文和代码出名,大家可以看见我这个视频的评论区。呃,希望大家呢,都能够顺利提交,也能够获得自己满意的奖项。呃,谢谢大家。

好的,小伙伴们,大家好,接下来我们讲 c 题哈,大部分同学呢,我看了一下后台的选择题数据哈,大部分同学都会选择这个 c 题哈, c 题的话呢,怎么说呢,你选这个没问题啊,同学们,我告诉大家哈,你选 c 题没问题,但是你必须要有创新啊,因为大部分的同学都在选这个 c 题,目前 c 题比例已经达到了恐怖的百分之四十哈, a 题百分之三十, c 题百分之四十,两个题目加起来接近百分之七十了,老铁们哈,百分之七十的人都会选这个 c 题啊,都会选这个 c 题 啊,所以说呢,我建议同学们哈,要慎重啊,其实我是非常不建议选这个 c 题的,我觉得吧,你就是大家大部分同学选这个 c 题都是为了图简单啊,但是呢,我告诉你们啊,图简单,不要去图简单哈啊,不要去图简单, 为什么呢?因为 c 题你看着哈,但其实它很麻烦啊,很麻烦 啊, c 题很麻烦,所以说,我建议你们不要去盲目的去做这个 c 题啊,不要盲目做 c 题,好吧,老铁们,我建议你们避开它,因为因为这样的话,获奖是比较难的,你不要图简单,大家说实话都知道,数据都知道,怎么建, 那你说对不对?你,你说你怎么获奖呢?你的创业点怎么来搞呢?对不对?所以说,我不建议大家选 ct 啊,真的,我,我是真心的劝大家啊,要慎重哈,要慎重好吧 啊,老哥,选哪个题?我建议我建议选 a 题或者选 b 题啊,你最好就是选,要么选冷一点,冷门一点的,这样选的人少,竞争压力会小一点,对吧?你选这个 c, 那 么大家都选这个 c 了,所以当然了,我,我不说,不给你分析哈,我给你分析,但你要慎重,你想拿奖,你必须要有创新点, 你必须要有创新点,如果你做这个 c 题没有创新点,那就白搭了,而这个 c 题的创新点 百分之大部分的都是两种创新方案,第一种改进的模型就是你用改进算法去做,第二种融合模型啊,就你选择不同的模型一块来做, 你说交叉你行不行?交叉创新的话,在这个地方的话啊,也可以试一下。好吧,只能也可以试一下,因为我们创新模型的话一般就有这么几种方案吗?所以说这几种方案的话没法说,但是改进算法的话,我觉得在这个地方是最常见比较常见一点的,所以大家呢,如果想做 c 的 同学呢,你要慎重, 你要能够有创新。好吧,你要有创新啊,真的哈,啥也不会,只能选 c 你, 那你,你不至于啥也不会,老铁们,真的不至于,你有 ai 了,理论,你没有不会的题目了,好吧,你没有不会了,而且 c 题呢,也没有那么简单,还是比较复杂的,大家都做, 所以说呢,就看谁做的好了,你想做的好的话,我觉得你和高手竞争是有很大的压力的哈,要有压力的,所以建议同学们呢,要慎重一点哈,要慎重一点 哎, ok 啊,这个这个大家呢要慎重哈啊,与这个题目的话呢,我们简单阅读一段的话,就是与星共舞啊,美国为美国,美国节目舞动奇迹啊, 然后呢,这个这个我们前面呢就是专家投票吗?专家通过什么在线投票?这是他们最喜欢的情侣啊,观众的话每周可以投票一次或多次,上下为当中公布的次数,然后呢,还有就是评委也可以投票之类的,然后选出第前几名来,对不对 啊?评委投票和得分和观众投票的组合方有多种,在美国版节日前两季采用基于排名的组合方式。第二季因什么什么啊啊, 然后,然后呢,就修改了这个争议哈,第二十四季又出现争议了对不对啊?评,尽管评委得分低,仍赢得冠军,作为回应,二十八级就说白了他的他的评分吧,是由评委和 评和这个观众投票来综合决定的。有的时候呢,评委觉得不好,但是观众觉得好,那观众投票多了,那么就有可能得得得这个最终的这个成绩了。但是,但是呢,又因为不专业,比如说一二流子一些选手,那么特别会讨观众喜欢,那也有可能对不对? 还有有有,如果,如果评委特别的占比权重比较大,观众占比比较少的话,那有可能这很多啊,迎合评委的啊,评委的角度不能代表大众的,所以有可能引发歧义啊,就来构建一个比较合理的评价的这么一个啊,评分的这么一个模型啊,这就是整个题目的核心哈, 来开发数学模型啊,估算每个选手在其参赛的每周获得观众投票数啊,就估算这个呢,就是一个基础的预测模型了啊,每个每个这个来,同学们,来,大家告诉我哈, 开发数学模型一个和多个来,你告诉我到底开发几个?首先啊,首先到底开发几个?这个是一个要点哈,到底开发几个? 你们记住哈,那就一定要开发多个。你想做 c, 我 还那句话,你必须是勇士,你必须要有胆量, 你必须要牛逼,对吧?要不然你要说你就开发一个,你开发一个非常基础的,你做 c 题,哪讲?我就这么说,你再创新也没有希望,因为因为选 c 的 人太多了,高手太多了。老哥这里统计了百分之四十的同学会选 c 了,都是勇士啊。说实话,所以你必须要开发多个, 而且多个模型来估算明白吧,来估算明白吧,你的模型估测关注投票结果是否能得出与每周淘汰结果一致的结论啊,提供一致性的衡量标准就是你要,你要能什么? 你要结果要准确,你不能结果不准确,对不对?确定性如何?每种确定性这个就需要有验证了,就你的结果也有验证,说白了我我告诉大家哈, 真的,这个地方就看谁的模型精度高了,但是你们记住你们的精度啊,很多情况下来大家告诉我,来来,我问一下哈, 我问一下哈,来,这个的话你说老哥,我不单纯的用美赛官方给的数据,我用别的数据来佐证一下,可不可以?老铁们,就是我用一些达人秀,或者我用一些别的投票的一些结果来做,可不可以?老铁们,别的投票的模型来做,可不可以? 可不可以?老铁们,你们跟我说完全可以,反而会把你的模型的这个精度啊,反而会提高的比较高。来这个地方一定要注意两件事一定要注意两件事哈, 一定要注意,除非他明确的说了啊,你可以看了没,你可以自行选择纳入信息或其他数据。看了没?其他数据,但必须要记录数据来,同学们, 我这地方要注意两件事,第一个叫什么过你河,第二个叫欠你河。来,你们觉得哈,你们觉得你们最容易做预测模型的时候最容易出现的一个问题是什么啊?最容易出现的一个问题是什么? 就是你们如果来做这个题目啊,后面会有啊,我会讲到啊,你不用担心啊,啊,你会讲到来 你们容易出现了一些问题是什么?做预测的问题,做回归问题啊,过你河,我告诉你们,你们最容易出现的就是过你河了,真的,所以说你们一定要注意一点,好吧,不要出现过你河 啊,这个很关键啊,很多同学呢,做预测经常会出现过你和还有同学这么这么来做的哈,来,还有同学这么来做的,我们来,来啊,我,我后面会讲到哈,这里有一个完整的看了没?完整的来 看一下啊,来,看到没,他有一个完整的解析思路,第一步,一定要做数据处理。第二步, 观众投票预测构建贝叶斯啊,这是基于概率的模型,以评委得分选手特征周次为自变量,以淘汰结果为约束啊,预测观众投票数,预测知信区间。来这个地方呢,很多同学这么来说的, 我看你们的方案了哈,你们说老哥我预测他的投票得数,那我这样不就行了吗?啊,我,我这样不就行了吗? 来,我直接就是用他每前几个周的得数预测他未来每个周的得数可不可以?老铁们,原来这样来说的哈,我用他前几个周的得数来预测他后几个周的得数 来。老铁们,你们觉得这样的行不行啊?你们觉得这样行不行啊?我刚才有同学在上面是这么说的啊,在评论区留言啊,包括在那个老哥私信我这么说的,行不行?老铁们,行不行啊? 为什么啊?包括你们告诉我为什么?我告诉你是百分之百不可能的,不行的哈, 你别乱搞哈,你记住哈,投票结果是未知的,严格保密的,你不可能说用这个是吧?哦,前一个数据来预测未来几个周的数据,你就你就,你就完整的变成时间序的预测了, 知道吧?你是不可能的啊,你,你别乱搞,你别乱整哈,你别乱整来。 但是我可以构建一个什么样的模型呢?老铁们告诉我,既然如此, 那我就不能用时间虚的预测预测了,对不对?但我可以用什么预测来,我要我现在要做的一个一个参数叫什么?观众投票数,他和很多项数据有关系,包括什么评委的得分打分,包括一些其他的。哎,这地方有哈,包括其他的 看啊,哎,在这地方包括他的年龄,包括行业啊,包括一些是吧?他的这个这个是吧?这个这个选手的一些特征,包括他日常的动态,包括一些其他的淘汰的一些结果。来 来,同学们告诉我来,我相当于我要预测一个指标,它和若干个指标有关系。那你告诉我要构建的是一个什么样的模型啊?啊?要构建的是一个什么模型啊?这是这种预测方案不叫持续预测,这叫什么预测?老铁们, 哼哼,叫什么预测呀?到现在啊,大家都提出了有用 xd 版的啊,随机森林对吧? 这就是回归吗?对不对啊?某一个变量和若干变量有关系,不就是回归吗? 是不是?那不就是回归吗?所以说你这个地方既然构建回归,你们就记住我刚才就要返回来,我刚才提到那个那个逻辑了,不要出现过你河,也不要出现欠你河,好吧,过你河就是你回归的模型,太美完美了。 来,你告诉我这种未知的投票数量的能过于完美吗?老铁们,所以说谁的预测的模型的精度达到百分之百,你反而应该要慎重了,你百分之九十六九九九你都要慎重, 你的精度不可能那么高的。我可以告诉你哈,因为他是未知的,而且这两组变量之间理论上没有什么必然的情况, 不能说他评委得分就高,他观众投票就高,对不对?也不可能说,但是呢,来评委投票高,有没有可能观众投票也高啊,也有关系啊,也有可能啊,那评委投票高,有没有可能观众投票低呢? 也有这个可能,对不对?所以说哈,这里面比较麻烦,比较复杂, 你呢,一定要慎重啊,一定要一定要考虑,就是自变量和一变量之间没有很强的关联度,没有很强的关联性,这个是很关键的哈, 明白吧,做这个做回归理论者是一个大忌,就是自变量和一变量之间没有很强的关联性,我们说这属于大忌,但是呢, 不代表说他俩没有关系,往往会呈现一个啊,就是典型的比如大部分选手可能评委投票比较高,观众得分也会比较高一点,只是说有一个大概的对不对?但是你要考虑极端场景之下的一些情况 啊,因为因为前面说了吗?对不对?来前面说了,以前面已经给你讲了很多了,对不对?说有有可能会出现专家评分高。所以说呢,这个 第一小问啊,我建议你们不要你合的精度太高。好吧,不要你合的精度太高啊,太高了确实会有问题的哈。来 第二小问啊,利用你的观众投票结果估算结果和其他数据比较和对比节目使用的两种投票方法,排名反而百分之在各季产生的结果是吧?就每一季对应的两种结果,如果结果再查也其中一种方法似乎更清,更似乎偏向于观众投票, 对吧?就是比较吗?对不对?和个体产生的结果比较结果的结果,如果,如果结果存在差异,那么其中就哪一种方法可能会偏向接受投票,说白了就是看看哪一种方法和观众投票的相关度更高吗?对不对? 然后考察这两种投票之外存在两种投票方法存在争议与观众或观众意见存在分析的特定选手的拥有情况,投票组组合方法的选择是否会导致这位每位选手的结果相同,是吧?每周什么什么的啊? 然后呢,咱们就那个一考虑一些具体的视力,把你建立的模型,再把具体的视力,然后呢这个考虑进去,然后呢,利用包括投票观众估算结果,在你的数据开发、模型分析、专业舞者以及数据中可用的名人数据的影响 对不对?这些因素对名人在比赛中的影响有多大啊?说白了就是你前面不是估算了一个观众投票的模型吗?对不对?利用观众估算投票结果在你的数据啊, 开发模型分析专业舞者以及数据中可用的名人特征的影响啊,这些因素对名人在比赛中的表现影响有多大 啊?啊,就你那个像年龄啊,特征啊,对比赛影响到底有多大?来评来他们对评委得分和观众投票的影响是否相同,这个也是要建立一个合适的模型哈啊,也要建立合适的模型的 啊。然后第四位提出另一种每周观众投票结合系统认为系统更公平。说白了就是就是啊,提出另一种每周结合观众投票评委的问题,说白了就是你提出一个新的打分方法啊,打分方法不是传统的这两种方法了,提出新的解决方法来哈,这样的话呢,你就需要全新的设计一种投票组合方法了哈, 让我们看一看完整的一个解决方案哈,来第一个啊,第一个来美赛啊,第一,一共四个小问,第一小问预测类题目,第二小问评价加决策类,第三小问影响因素分析,第四小问优化设计类啊,因为第四小问的话,它涉及到 新的投票方案嘛,对不对?所以说需要用到用到这个优化设计类问题哈,优化设计类来每一个小问,第一个问,预测每位选手每周的观众投票数,验证一致性和确定性,说白就验证精度啊,验证投票的这个预测的精度到底怎么样? 评价两种投票方法的优劣啊?分析争议的案例,提出决策建议,就两种方法,他有没有什么两种投票方法啊?选人的方法有没有什么对错优劣啊?这叫是吧?那第三个分析专业舞者和名人特征对比赛结果的影响啊,然后呢?这叫做影响因素的分析吗?对不对? 然后设计新的投票方案,这叫设计新的投票组合方案。系统一般就是优化了,对不对?优化方案找到最佳方案吗?对不对?最佳的这个投票组合方案,来,我们看一下理方法哈。方法 来,第一个用预测类模型,我们说了不能用单纯的时间性的预测模型,这个地方是不适用的,而是要用回归预测的思想,比如 c g c 的 模型加广义县域回归也可以啊, b e s 模型可量化观众投票的不确定性 对不对?然后 glm 能整合评委得分啊,选手特征等预测变量适合小样本高维度的需求,所以这两个模型组合,那个这叫组合创新,类似的组合创新还有很多很多的 好吧?很多很多的组合创新,比如说,比如说你这个地方可以用模特卡罗模拟,模特卡罗模拟来来得到与观众投票的不确定性数据,因为观众投票不确定性数据可以用模特卡罗模拟来做一做, 然后再结合一些预测模型来做,更好了啊,结果更,这样的话更好了好吧。有很多种创新方案,说白了就是你这个地方你不能上来就构建一个基础的方案,比如 igbo 的 cc 零,那这样的话是不太合适的,你要考虑到很多的不确定性因素好吧,而这些不确定性因素反而成了获奖的关键, 明白吧?啊?活跃的关键啊,你这里构建的模型呢?就是小样本高维度的预测数据。因为维度数据比较高,指标特征比较多吗?所以需要构建高维度的啊,高维度不能用基础的什么灰色预测什么的,不可能好吧,不可能的就是老哥老哥我用深度学习神经网络可不可以也可以 深度学习神经网络本身也适合于高维度的预测,但是呢,你的数据量最好大一点好吧,数据量太小的话很容易陷入过你核的现象啊。 啊过你和因为神经网络还有这个这个深入学习很容易过你和。所以说你需要有大量的样本来做哈来做。 还有第二个就是评价了啊,评价两种方案的对比。你可以啊,选择量量化两种方式的多维度,比如说两种方案每一种方案的公平性是观赏性 等等,如何?然后看到系数呢?看到系数用于衡量结果的一致性,这是评论结论,这两个组合起来也可以解决这个第二问啊,就是评价类评价两种方案的一个优劣吗?评价就是是吧,先构建评价指标体系,比如说公平性,观赏性是吧,这个效率之类的效率 啊,成本啊之类的,你可以都把这些特把这些呃,样本把这些指标啊,然后呢构建一个评价指标指标,然后呢再构建这个相关的一个权重 来这个地方你们最好来,你们告诉我啊,权重怎么来确定啊?要用双权法, 双权法能有公平性观赏性能能确定吗?啊?专权法能确定吗?做 a g p, 这是最最基础的一种做法了,因为公平性观赏性这玩意 甚至有模糊综模糊综合评价法,因为里面有很多模糊因素。公平性?什么叫公平?什么叫不公平观赏性?什么叫高傲低啊?较高傲,较低,这有很多大量的模糊因素,所以说用模糊综合评价法, a g b 模糊综合加模糊综合评价法,这个地方是比较适合的。好吧,你用双减法什么的,没有数据支撑压根对不对, 只能用这种模糊综合啊来做啊,来,还有影响因素分析,可以用多元现金回归加随机森林,如果你上面用过随机森林了,在这个地方我建议你就不要再用随机森林了好不好?不要再用随机森林了,你上面如果用了这个地方就不要用了哈,你如果上面没用这个地方啊,第一位也可以用这个地方,就需要换个别的哈,好不好? 影响因素分析啊,你可以用随随随心回归加随心随林啊,回归模型量化限性因素效果。然后呢,这个随心随林捕捉非限性和交互效率,全面分析各行的重要性。说白,用随性回归来评价每限性 量限性影响啊,限性影响哪些因素啊?是限性限性哪些限性因素他的影响影响效益是比较大的,因为这样的话,他的限性限性参数里面的那个参数值参数影响会比较大一点吗?对不对?那么非限性参数, 那么就需要用 c c 森林了,来得到哪些非限性参数啊?来,你那个因素是比较重要的啊,这两个综合来考虑。哎,这个挺好哈挺好啊,营养因素分析用这种两种方法来分别构建限性因素和非限性因素,哪一个影响分别影响是最大的啊?这个反而挺好哈挺好的 啊,还有优化方案的设计第四位你必。你如果想拿奖,整个废题,你不能单纯的就上来就是提个建议或者等等之类的,或者随便上一个方案。你需要构建一个优化模型 啊,你优化模型的话,这样的话是有说服力的啊,不要多目标优化啊,既满足什么?满足公平性又满足观赏性,这样的话两种目标对不对? 然后建立一个优化模型来得到一个最终的一个新的模拟,新新的一个投标系统来做新的一个一个打分系统。来来来得来得到哈。这打分系统既兼顾了观赏性又兼顾了平稳公平性。好吧,这样的会更好一点更好一点啊, 来,这个题目的难度呢?在三点五分左右,我的难度系数呢?中等吧。中等啊,不算高也不算低哈啊,不算高也不算低啊。首先呢比较复杂,就是他不是一个常规的时间训练预测模型啊, c 题就是很多预测都是用时间训练预测来说,但这个题目不是啊,他比较麻烦一点 啊,需要整合很多,又里面又有评价又有预测又有影响又有优化四种题型他完全还改了,你还要做到创新是吧?你没有创新还不行 对不对?你没有创新的话,因为本身原有的方案就有就不好了对不对?你还没有创新,那你怎么能获奖呢?对不对? 所以就是他,他就是要求你创新,他不是说不要求他要求你创新啊,他就数据量工作,数据处理工作量也比较大, 因为题目给了你大量的数据集,你需要做数据处理,你不做也不行,对不对?数据处理比较大,你万一漏了那也不行。而且 c 题百分之百数据是有问题的哈,我告诉大家每赛官方的尿性,百分之百数据是有问题的,你不做也不行哈。 啊,难点啊,刚才说了是吧,投标的间接预测,无直接数据交准是吧?说白了就是你,你需要人为人为的来判断一下一致性,没有数据作为交准,未知的投票结果,观众投票结果都是未知的哈。 两种投票方式你需要兼顾公平性、观赏性这种呢?公平性和观赏性吧,本身就属于模模糊数据级,又要把它变化成量化,所以需要构建成吗?绿水多函数, 这个函数的构建很关键,到底是限行函数还是还是一些其他的非限性函数来,你和这个量化指标,这个就很关键,你要构建一个模糊综合的话,你需要你绿水多函数,这管重要是吧?这个绿水多函数一旦做错了,那就很危险啊。 来,还有选手的特征,评委得分啊,很复杂啊,既有这个年龄行业又有得分,又有主观客观的一些内容交杂在一起就复杂的建模啊,很麻烦哈。还有新的投标系统吧,也比较麻烦,一种条件怎么来设定 对不对?目标函数怎么来制定?目标函数又要兼顾两种,两种内容,这两种内容又不是那种传统的量化那种,他整个题目真的是既有哎,预测优化,模拟。哎呦我的妈呀,我头大,我头有点大了啊。真的啊, 头有点大了是吧,还要脸?数据处理必须要做对吧?零得分啊是吧?控制啊,都需要补充是吧?预测需要明确假设条件,量化不确定性是吧?有很多的不确定性,你还需要量化他 对不对?你不像这个 b 体吧,太空电梯吧,有些不确定因素我们还能知道是吧?异常了,别结果突然变大,结果变小的,这玩意不确定性怎么来量化对不对?比较麻烦 是吧?还有评价指标的确定,指标的确定呢?还都是一些啊,一些难以量化的一些模糊指标, 对不对?也很麻烦对吧?新系统设计还要既要保证效率,还要你不能整的太过于复杂是吧?你整的太过于复杂的话,那就可推广性,可朴实性,就朴实性就比较小了。所以这个题目看着简单,实际上一包子坏水哈,一包子麻烦哈, 来啊,首先解决思路,先数据处理,然后呢啊,选举选手特征,变量,年龄,行业,然后构建观众投票,观众投票预测模型。贝叶斯这样的模型是不是 以什么评,以评委得分,选手特征周期为自变量,以淘汰结果为约束,观众预测投预测,观众投票数,计算预测执行区间 啊,这两种模型来分别构建啊,以什么为质,变量为什么为约束什么的,然后投票方法评价啊,设计指标评价体系,如争议、防范力, top 三偏重等于得分,用 h b 量化权重。然后呢,分析差异, 第四个要因素分析,构建回归和森林分析,专业舞者啊,来来和对投票的一个影响程度啊。然后呢?第五第五种设计多目标优化模型来确定啊,这整个的这个这个思路啊,还是比较比较明啊。思路倒是比较明显了啊。思路第一步,第二步,第三步,第四步该干什么?我们刚才的分析已经比较明显了啊, 要点就是创新,必须要融合多元信息的创新。好吧,这个模型的创新之管重要。这个我觉得这个题目的关键就在于创新,你到底能不能得到一个创新性的一个评价,一个预测模型,一个一个那个,呃,打分模型这个很关键啊,都是逼着你创新, 还有就是量化结果啊,量化结果是吧,给出投票的准执行区间,预测区间,这个说白了,你这你的预测值和预测区间千万不要太高,我建议不要整个百分之百,你说老哥我就等着百分之百,那你这是过你河了啊,一定是过你河了哈。 还有就是这个可制化哎,最好做一下可制化分析,模型检验也最好做一下啊,模型检验啊,然后呢?呃呃,擅长哎,这个题目就比较擅长数据处理。擅长擅长擅长。那个数值分析的题目推荐做, 计算机人工智能的也推荐做,功课的就不要不推荐了,因为里面也没有你能发挥的余地,全都是一些统一建模的东西啊。功课的不建议你做,尽管的呢,也还能做哈,也还能做哈 啊。然后呢,这个零基础的啊,我也不太推荐啊,比较麻烦。中等基础的也可以,高基础,中等基础,基础能力比较好的可以做一做,因为这个题目呢,写的人多,意味着你比较有创新点啊,看着简单,但是入手很麻烦,你看啊,一步一步的很麻烦,你千万不要觉得这个题目简单,我反正做到了,我没觉得很简单哈, 我真是觉得比 b 题都麻烦哈,真的哈,你可以你可以试试啊,你想做的同学,好吧,然后呢,我们一会呢还是会用我们整个的 ai 的 这个这个教程啊, ai 的 教程来给大家全详细的做一遍哈,来把这个是吧,尤其是注重创新,看到没, 我这里面还是会注重创新啊,这个方案二里面会注重创新,然后呢,把整个 ct 完整的从零到一的建模过程,代码调试都给大家做出来哈, 然后呢,我们把相关的代码包括我们的老师也在研发了,到时候相关的原代码都给咱放在这里面,好吧,我们导出的原代码都给大家放在这个里面哈, 好吧啊,大家到时候一定要去领取一下,千万不要忘记领取哈啊,不要忘记领取相关的原代码,相关的参考资料,相关的代码成品那边都给咱放在里面了,你到时候可以比对一下老哥团队做的和你们团队做的到底怎么样,好吧 啊,不一定,我们做的完全就百分之百对,仅供做一个参考哈,相关的源代码资料,每个题目的源代码资料,还有相关的解析文档之类的,就给大家放到我们我们的网盘链接里面去了,大家一定要去领取一下哈。 ok, 谢谢大家。

好,那么我们首先来讲解一下这次美赛 a 题的一些思路。首先看一下 a 题的题目要求啊,它要求我们开发一个智能手机电池的连续时间模型, 该模型呢,能够返回在真实使用条件下电量状态作为时间的函数啊,可以用来预测不同条件下剩余电量的耗尽啊。我们就假设啊,手机使用的是锂离子电池啊,这是题目要求的我们,所以说我们不用管 啊。接下来呢,它的要求我们可以看到,首先是一个连续时间模型啊,这是首先的要求,也是最重要的要求,就是它要求我们用一个这样的符合条件的模型来进行一个预测。 然后呢啊,比如说,我们可以扩展一些其他的影响因素,比如屏幕使用处理器附载网络连接 gps 等后台任务,因为它后台任务越多,我们的手机可能用的电量就越大嘛。 之后的话呢,哦,我们这个数据作为支持并非替代,意思就是说呢,我们可以收集啊,使用数据呢,进行这个参数估计和验证哦,如果哦,我们一般这里选的呢是开放数据集,当然我们可以选择一些已发表的测量数据, 但是需要啊,提前引用一下,但是这里呢,我们需要啊,尤其注意的是啊,这个参数呢,是有明确的理由说明和经过理性验证的, 所以呢,这个基于离散取现,你和时间不回归或机器学习而没有连续时间的模型项目 将不满足本期的要求啊,这句话是什么意思呢?其实就是它封死了你用神经网络和机器学习的这个啊思路就是说你不能用这两个思路了,因为大部分的时间序列,比如说 ram 或者是 l s t m 模型都是时间不回归 啊,黑箱基地学习就是叉列 boost 的 那些啊,随机森林啊,就不允许我们再用了。也就说这个题强制我们使用物理的方式啊,和数学的那个微型方程来进行建模。 然后要求二是电量耗尽预测。我们建立好模型之后呢,要使用我们的模型,在这个初识充电水平和使用场景下,计算或者是近似电量耗尽的时间。然后呢,将预测结果和观测到 与观测到或合理的行为进行比较,量化我们的不确定性。这里的意思其实就是判别我们模型的好坏。 然后呢,下面就是一些啊,不是很重要的一点啊,这些点呢,如果大家能实现呢,当然是最好,如果不能实现呢,其实也没有必要强求啊大家,嗯,就是 啊,看自己的这个数据的需求,因为数据不一样,可能能实现的目的呢,也并不一样, 就比如说这个哪些活动导致的电池寿命最大程度的减少,那么电池寿命啊,有没有数据可以标注呢啊,也许是有的,但大部分数据可能没有。然后最后一点呢,就是 这个敏感性和假设检验在这个我们的模型上啊,参数值使用模式波动后,我们的预测呢,有什么样的变化?就比如说我们可能动一个参数,看一看我们的预测是不是有很显著的变化啊,看一下这个模型的抗干扰性如何 啊?然后下面是他给你的一些建议,还有报告的一些书写形式啊,那么我们接下来直接来看一下我们的讲解思路。 首先的话呢,题目要求的是连续时间模型,所以我们需要从能量守恒出发建立这个微分方程 啊,建立的微分方程呢,就是这样一个形式,就这个形式比较简单,主要是我们后面有些扩展,它比较复杂 啊,这是最简单的基础形式,其中呢这个啊微分 soc 呢表示的是电量的百分比,这电量的百分比呢,其实题目中呃说明其实就是我们手机剩余电量和占据手机总电量的百分比是多少, 然后呢这个 p 透透呢是总功耗,也就是它它电池的总功率,然后呢这个 e 呢是电池的总能量, 这里呢是我们这个公式中的一些主要参数。 q 呢表示这个电池容量,然后 v 呢是电电池的标称电压,然后屏幕尺寸啊,手机型号,还有手机年份等。 然后呢第一步呢是最基础的形式,也就是啊我们的基础模型,首先我们就假设我们的工号是横定的,对吧?这样呢就可以得到一个最简单的限行模型, 我们就把右边呢啊变成了一个现行,比如说他叫负 k, 然后呢 k 呢我们这里表示的是啊耗电速率,其实就是一个常数, 然后呢建立一个那个限行模型,其实这里这一步的作用呢,就是帮助大家建立这个基础验证数据质量,理解基本的耗电规律 啊,对啊,对于我们这个模型的建立来说呢,是一个前期的支持和点击的工作,所以大家啊这一步,而且呢这一步呢也能丰富我们的论文,所以这一步大家可以根据自己的需求去做一下啊,最好是有这一步。 然后呢第二步呢,我们要分解一下他的工号组建,比如说我们将总工号呢,其实分解可以分解为多个来源,对吧?首先是这个基础待机的工号啊,这个呢是由手机型号决定的,我们可以查这个手机的具体规格。 然后呢这个是屏幕公号,屏幕公号呢是由我们数据中的一个字段进行推断的,然后呢 st 是 屏幕是否是开启的?然后呢蓝牙公号是有一个啊,蓝牙的信息。 之后呢,这个 b 表示蓝牙是不是连接了啊?可能它是零或者是一啊,零的话表示没连接,一的话表示正在连接。 然后呢这个 p usage 表示的是我们使用的强度功耗啊,比如说它可能这个手机连续使用了三个小时,和连续使用两个小时,那肯定是不一样的啊,这个 u t 呢是我们使强度系数,这个呢是由用户特征来进行预测的。 好,接下来呢第三步,第三步呢,我们加入这个设备参数,设备参数呢,大家这里有很多方式可以去查,就比如说大家可以直接去百度去查,也可以直接用 deepsea 去查啊,当然可能百度啊,可能这两个差不多,但是百度要准一些吧,可能, 嗯,或者是大家如果有条件翻墙的话,可以用谷歌去查,比如说这里 apple 手机牌子对吧? iphone 十五,它的电池容量是多少?电压是多少?功率呢?是多少? 然后这个每一个手机型号对吧?比如说小米,他的充电功率可能有六十七瓦,毕竟国产的吗?他有大家也都知道他的功率比较足啊,这一点呢,可能对于我们后边这个,呃 需求比较差距比较大,比如说啊,我们选了一个国产手机,对吧?想用在一个苹果手机上,让他这个充电功率之间的差异很大,就可能导致我们的数,导致我们的数据,导致我们的结果出现一些很大的差异。 然后呢这里给大家讲解一下这个完整的啊建模步骤。首先是数据预处理啊,数据数据预处理部分呢,我从头开始给大家讲,首先先看一下我们的这个数据,这个数据呢,包括我们这个啊, 包括我们的电池,比如说他这是一个时间训练,对吧?包括我们哪个手机哪个时间他耗费了这个他的电池容量是多少?然后他的这个状态是什么样的? 然后这个呢是我们这个手机之间他的一些,比如说他的牌子,一些型号,然后时间啊,然后使用者的年龄、性别,当然这个可能没有多大用啊,大家去掉就可以。然后这个是手机的使用时间,然后呢这个是,呃, 这个是手机的年限啊,这个是手机使用的,它就就据这个手机生产,它已经过了多长时间啊?比如说这样的数据 啊,这里呢,比如说我们首先啊先用 python 处理一下导包,然后呢将我们的数据读取进来,然后把没用的列进行删掉,因为这我们用的这是一个问卷数据,我们就把用户回答的问题 哦给删掉。然后比如说这里我们就可以看到一些这个数据,对吧?都被我们读进来了,然后呢读取一下他的电池一些啊特征,然后 然后呢接下来是蓝牙他这个用户这个时间蓝牙是否在连接状态, 然后呢这是我们这个用户的一些信息,就是我们手机的一些详细信息,比如说啊它的型号啊,配件什么的,这些都在这个信息里,然后都读取完毕之后呢,我们就可以对这几个表呢进行一下连接,连接之后呢其实就是按照他们的 pid 和他们的时间, 把我们的蓝牙信息和这个手机电池状态啊,还有这个呃手机电池的容量当前剩余的多少啊,给它纳入进去 啊,然后呢再把最后呢再和我们用户的信息进行拼接,这样我们就得到了一个完整的数据框啊,这个数据呢大家呢如果说感兴趣的话呢,可以购买这个我们美赛 a t 的 讲解完整版,到时候所有的数据代码以及完整版的论文都会为大家奉上 啊。那么这里我们继续看,比如说它包括这样一些啊信息,就一个手机这个时间它的电池容量,然后蓝牙 是否是连接的,然后他的电池是什么样的状态,然后手机型号是多少,然后他的手机使用年限,对吧?这些都是我们的信息。然后我们后续可以加上一些这个手机的参数,就比如说这个手机的电池容量是多少,工号是多少,对,我们可以查出来之后把它加上就可以。 然后呢呃,这里呢是我们一些详细的统计,就是包括每一个手机他记录了多长时间,我们可以看到这个二零九七这个手机呢,他有六千多条记录,这里其实数据的选择是很重要的, 就你的数据呢,如果他的行数越多,我们建出来的模型呢,可能是越准的,如果数据越少,比如说他只有六百多条的话,可能我们处理之后他就没有多少了啊,这样的话呢就是差距很大。其实 啊,这里我们可以优先选一个这种比较高的,对吧?条数比较多的,然后呢我们可以看一下手机型号,我们也可以看到这个呃, iphone 还是比较多的,对吧?可能占了一多半,然后呢大部分都是国外的手机,然后哦我们接下来呢 看一下这个具体是怎么处理的,比如说这里我们选择了是二一四六这个手机,然后呢首先我们先把时间处理成正确的格式,然后呢看下一步距上一步我们过去了多长时间啊?计算一个小时时间处理, 然后呢啊还有一些,比如说创建指示变量,然后 看一下他这个,他这个蓝牙连接状态,然后呢算一下这个用户使用的强度,比如说我们根据这个用户他已经使用了多久的时长, 对吧?我们可以给他指定一个啊,映射到一个用户的使用强度,比如说如果他使用时间很短的话,那么他的这个指标也很短,对吧?如果他使用时间很长了,三个小时以上,那么我们给他的指标呢,就非常长啊。 然后呢这里我们有一些电池参数,这里的话就是查询的每一个手机它的一个这个啊 q 啊,电池容量,然后电压呀,这种电池的能耗到底是多少? 然后这个信息的话呢?嗯,大家购买我们这个啊,美赛 a 版的啊,这个题目之后呢,这个完整版我们会给大家啊发过去,然后大家有什么数据上有什么问题呢?也可以购买之后加群,然后向我咨询, 然后呢这里就是把这些指标也加到原始的数据框里,然后呢还有一个老化系数,这个老化系数呢其实就是这个手机,对吧?它的根据它的使用年限,我们肯定要加一些这种老化系数, 就是这个手机使用的年限越长,它电池呢肯定是老化越严重的。这个大家在使用自己手机的时候肯定都有体会,一开始电池的这个健康程度可能是一百,但是我们使用一年之后,它可能就降到啊九十八或者是九十五,甚至更低啊,这个手机使用更长呢,它自然就更低了,对吧? 然后呢我们去除无效的数据啊,这里呢我们就是我们只要因为我们要看这个电池使用时间有多长嘛,所以我们这里保留放电过程就行了,也就说只保留电池减少的那一部分就可以了啊,不需要去关注它充电的这个过程。 然后呢我们处理完成,我们可以发现就剩下这个一千八百多条信息,然后呢用户的强度,然后老化系数等等等等这些信息啊, 然后具体剩余的代码我们写完之后会第一时间发给大家,然后大家购买之后呢可以实时查看,然后可以进行答疑操作。

好,大家好,那么在上一个视频啊,我跟大家讲了一下选题建议及 ct 目详细的一些思路,那么这个视频呢,来给大家讲一下这个 a 题目啊完整的详细思路呃,我这里也准备好了一个十一页的思路文档啊,这个 a 题目的完整思路,包括一些收集到的数据。呃,然后呢, 好,我们预计会在明天,也就是一月三十一号的中午左右就会更新完毕 a 题目以及 c 题目的完整原创论文及相应的代码和结果。但关于这个完整成品的出名的,大家可以看这个视频在评论区, 嗯,还是跟以往我的所有比赛一样,我现在发布的只是一个思路的讲解视频,那么后续呢,就会有一个完整论文和相应的代码和结果的保姆级的教学视频啊,大家可以期待一下。好,那废话不多说,我们来看一下 a 题目的这个思路啊,包括这个 a 题目的思路呃和数据 啊,以及我人工校对后的啊,这个翻译的版本啊,大家都会看这个视频的评论区。好,我们来看一下 a 集目的这个题目, 那么 a 集目的呢,它是这个,听背景我就不多说了啊。第一问,它要求我们建立一个连续的时间模型,去开发一个模型,使用连续时间方程或者方程组来表示和电的状态啊,让我们从电视界的复杂啊,网络连接啊, gps 的 使用啊,和其他后台任务。 那我这里呢,还提示我们就说数据呢,只是作为支持,而非替代品,我们千万不能够采用啊,一些找到的数据进行离散的曲线拟合,或者是没有显示连续时间模型的积极学习啊,这样的是完全不行的,这句话意思是什么呢? 啊?其实就是说咱们这道题目是一个非常典型的连续型数学问题,我们只能够通过建立微分方程模型的这样的一个方式去求解,这道题目绝对不能够采用单纯的数据驱动或者数据拟合和机器学习来这这些东西来去求解,大家能理解吗? 这必须得从物理建模机制去进行出发来进行球解的。那最初这个数据呢?我们找一个数据的啊,只是我们用于其中一些参数的,确定能理解吧啊,因为我们是要用到很多东西了,比如说这个什么处理器载啊,网连接啊,屏幕使用啊,包括第二问啊,我们要去做模拟 这个排空时间,所以呢,在这种我们肯定是需要一系列的参数的啊,这里呢,我也是找到了一部分的这个数据啊,包括这个,比如说建句物理和动力学的这个热理学的参数啊,一些参数啊,还有一些硬件啊,这个主键功号的一些参数 啊,那么这个呢,所以呢,这这道题我们找数据啊,只是用来找参数啊。好,接下来看一下第一问的思路, 那么第一问建立连续时间模型呢?这是这个题目的核心啊,我们将去建立一个描述它耗电状态,就是 s o c 随时间变化的微分方程系统,那我们要基础的一种思路呢,就是改进的库能技术法啊。 呃,这样的核机式呢,其实就是把电池呢视为一个比较理想的能量容器,那么 s o c 的 变化率呢,就等于流出电流与电池总能量的比值啊,那给出一个这样的数学形式啊,这是它的这个数学形式表达式 啊,呃,这里面这个 st 表示它的亮度或者状态,然后 ct 呢,表示它 cpu 的 载率, n t 表示它稳固通途量,这个呢,呃,它就是可级性比较高一些啊,比较容易理解,也比较好求解,大家如果说代码能力,编写能力比较差的人呢啊,或者说你这个 能力比较差的话,你可以选择这种思路,这个竞赛前面呢,基本上就是在 h 讲左右啊啊,基本上符合这道题目的要求的就是这道题目还能解答完毕的啊,但是呢,它是比较缺乏深度的。那么另外一种就是我推荐这次大家去采用这种思路呢,就是第二种啊,进阶创新思路,也就是等效电路模型加热偶合模型。 这的核心是呢,其实就是使用二阶 rc 等下电路模型的去模拟锂电子电池的动态特性啊,就说不但看 s o c, 也要去看它的端电压,并且引入温度作为状态变量,因为这个题目呢,是把这个温度的影响是明确的已经指出了啊,所以我们必须得把这个考虑进去,大家能理解吗? 大家看好了欸,温度等环境变量的建议不使问题复杂化,选这道题目呢,我们必须必须得引入温度这个变量,假如说不引入的话,你们最多最多你也是 h 讲左右的水平啊, h 讲的水平绝对上不到 m g 一 车,因为你连题目这个背景信息里面的一个重要的点都没有考虑到啊,就是关于这个 温度,这个环境条件必须得考虑进去,现在在这里呢,我们要必须得加入这个热偶合模型啊,就是提到这个温度影响这里的稳睡性,其实是这样的啊,这样的一个偶合的微分方程组啊,就是 soc 的 状态方式是这样的,那么极化的电压方式是这样的,那么热模型哎,是这样的模型, 那么这样呢,这就是他们的多电压的出处。那么这个呢啊,这一个呢,物理意义呢,就是比较强的啊,也是非常完美的去契合题目啊,这个关于温度变化的这个要求,能够解释为什么大负荷下电叫的快啊,有内阻发热损耗以及温度的这个影响。这个呢,从思路上而言啊,这个基本上就是排负到 o 奖的水平了 啊,因为我们不仅用 soc, 还有电压和温度的变化啊,大家看过这个完整成品的这个链接也能看到 呃,我往期带的就学啊,比如二零二五年比赛一共是二 f 六 m 和若干 h, 那 么基本上为什么我最后呢我的学员能拿到这个 f 奖及以上呢啊,就是因为我会在这个我的建模和论文里面呢,会提出很多种创新,种创新的思路啊,那么还是一句话, 能决定你拿 h 或者啊 h 或者 m 啊,这个可能跟你的排版 j r 啊等等有很大的关系,但是呢,一旦涉及到 f 讲级以上呢,那么你必须得有一定的创新思路啊,所以呢,在这里呢,我推荐大家,如果想要奔着更高的讲下去的话呢,采用这个第二种思路进行创新思路啊,我们来看一下啊, 第二问,第二问是这个排空时间的预测,让我们去预测啊,就是计算或者近视各种数值电量水平和使用场景下的排空时间。 老姜,预测结果呢,会观察到的或合理的行不行,比较量化这种不确定性,并且确定模型在哪些方面表现良好或者不佳,而这展示我们的模型如何解释这些结果中的差异,并确定每种情况下电池快速消耗的具体的因素,以及哪种活动会导致它电池寿命, 哎,会有一个巨大程度的缩减,以及哪些活动会对他的模型的改变的出席的少。好,我们来看一下真的这一问呢啊,就是我们要去预测啊,这个电量的耗尽时间对不对 啊?这里呢,我们的基础版的思路就是采用一些确定性的场景去进行模拟啊,就是我们设定几种固定的这个场景的模式,比如说纯待机啊,比如看视频,比如打游戏,然后呢把函数或者分数函数呢带入这个 o d 里面啊,如函数方程里面去进行求解,直到它的 s o c 等于零。 呃,然后我们可以去比较不同模式下的这个斜率,这个呢比较简单直接一些,但是他有一定的缺点,就是说呢,在现实中我们用户的行为呢,他不是恒定的啊,你不说你一直就只看视频,或者你一直手机就纯待机,你当然是一会待机,一会看视频,一会又想打游戏了,哎,对不对?是很多种这个状态和模式呢,你是不断切换的, 所以我们间接的唤醒输入呢,就是说加入一个随机过程和截止电压的判定啊。其实我们的核心思想就是说在输入端里面就要创新, 因为我们的用户的使用习惯,它不是横电的,而是随机的,所以我们采用一个马尔可夫乔治泼冲过程啊,或者简单的马尔夫列去生成它的一段随机训练啊,就是在它的亮屏啊,高富宅啊,或者说空空闲状态之间质渐形阶化啊,那么各个状态怎么去定义啊?这我们或许在论文里面呢,会有详细的这个定义过程啊,当然我们还可以再定一些其他的这个状态 啊,就除了亮屏啊,高副打啊,或者空闲啊,你们当然可以去继续设定自己的状态啊,比如你你可以暂停待机啊,视频状态,还有游戏状态等等,各种状态都可以啊。 那么此外呢,我们的手机关机呢,不仅是因为 soc 等于零了啊,也是因为这个端电压是低于截止电压了,就加入一个截止电压。这样的一个问题啊,就是在大电流的覆盖下,即使说 soc 还有百分之十,但是电压呢,可能会瞬间拉低到它关机,能理解吗? 啊?然后我们采用这个运行这个蒙特卡罗模拟去生成它的概率分布,不仅给出它的一个事件,而且还要给出啊,有多少的概率是续航在几个小时之间的。那么这个竞赛呢啊,针对于咱们的美赛而言呢,哎,这个冲刺劲就比较高一些,大家的获奖概率也比较高一些,能理解吧?好, 接下来呢,第三问啊,第三问它是要让我们做一个灵敏度分析啊,灵敏分东西, 你们都分析的话,这个就比较简单了啊,那么基础版的思路就是做一个局部的灵敏度啊,你固定一些其他参数,然后改变一个参数啊,去呈现啊,一个龙卷风图去呈现就可以了,这是非常标准的做法,是中规中矩的。那么另外一个间接的创新思路,还有一句话,我还推荐大家去采用间接的创新思路,这样的话呢,可以大大去提高大家的获奖概率, 那么就是采用大局灵敏度了啊,大局灵敏度我们可以考虑到呢,参数之间呢,可是可能是存在非限性藕合的,所以我们采用大局灵敏度去分析这种交互作用。好吧, ok, 接下来就是最后一问了。最后一问呢,这个除了建议之外啊,使用建议之外呢, 其实呢,题目还给出了一个东西,就是说考虑到电池老化如何去有降低有效容量的啊,或者我们这个建模框架如何去推广到其他便携式设备的啊?觉得这个呢?第四问,大家不是说只要根据前面咱们纠结的这个结果啊和过程建模呀啊,去给出一个建议,这个呢,咱比如也得考虑进去啊, 在这里呢,我们给出用户建议啊,结果我就不多说了,好吧,我们重点是我们要考虑到电池老化的这个扩展啊,所以在这里我们要引入一个健康状态, 就是电池老化嘛,就是电池健康度啊,这个大家用通俗的应该都懂啊,引入一个健康状态,然后建立一个比较简单的这样一个老化累积公式,然后呢,他们的充电循环次数增加啊,越多,他内层永久性的增加,他的容量也会永久性的减小,导致他的续航变得,把这个老化的扩展加入进去就可以了。 好,那就我给大家总结一下,那就这道题目呢,我们首先第一步一定要用微分方程组,绝对不能用数据驱动,第二必须得抓住温度这个变量,因为题目中是已经明确的告诉我们的这个温度的环境变量啊,以及说这个 啊,一方面是持续重度使用下可能是过热的,另一方面寒冷情况下可能会失去有效重量,所以这个温度因素必须考虑进去。 再一个就是关于数据来源问题,这个数据来源呢,我还跟大家说过了啊,前跟大家说过了,这个数据呢,只是辅助,所以呢,我们只是查看一些旗舰级的电视参数啊,作为我们实际的建立这个微分方程里面各种模型参数的物理依据。 最后我需要注意的就是这个可视网问题啊,我们必须要去展示它 s o c 随时间下沉的曲线,以及时间随温度上升的曲线啊,那么这两者呢,是相互影响的,来一起吧。 好,来这里是最后中,我目前啊,我大概爬取的一些数据啊,包括一些电池物理和热力学的参数啊,这是一款旗舰机的一个容量 啊,四千毫安时,我我爬的是一个 iphone 十四 pro 的 这个,呃,电池的一个参数啊,这个大家当然也可以采用一些其他的旗舰机,女人采用华为啊,这些都行,都行, 改这句话呢,这个参数大家可以自己去改,你这个总电量,你你可以采用你手机的嘛,你比如说你手机可能四千五啊,你就改四千五啊,你八千你就改八千也行嘛,对不对啊?呃,这是一些参数。好,那么这里是一些硬件主键的功耗参数 啊,包括其他参数呢,我后续还会继续去搜习,那么在我后续实际的纠解和建模过程中,我再去一步步的去完善吧。好吧,我大致的思路呢,总之就是这样。呃,我们预计呢会在明天一月三十一号的中午左右就会更新完毕这道题目的完整原创论文以及相应的代码和结果啊,那么 a 题目和 c 题目呢?我们都会完成 关于这两个题目的完整成品的说明呢,大家可以看这个识别的评论区,关于这个思路文档啊,包括这个 a 题目呀, c 题目呀,这个翻译呀, 啊,数据啊等等这些东西呢,大家也可以看这个视频的评论区。好,那么大家有什么地方没有听懂的话,你可以拖回去再看,也可以把这个视频转发在你们的队友群里面,根据队友那一句商场里来看,假如说你不是这个负责建模或者电子联盟的话,呃,防止大家踩坑嘛,包括里面这一些,呃,这个进阶的创新思路,我觉得带大家还是有很强的参考线的, 呃,希望能够提高大家的获奖概率啊,呃,能够帮助到大家,呃,预祝大家呢都能够获得满意的奖状啊,谢谢大家。

hello, 大家好,下面我给大家讲解,完全用我们这个 ai 这个豆包完成美赛的一个完整的一个论文拿下 m 奖。这个论文是去年完全用这个 ai 生成的, 这是翻译以后的这个文章,我们可以看一下最后拿的是 m 奖,好吧,我们可以看一下这个完全就是这个文章翻译的。 好。下面我给大家详细的演示如何用这个 ai 拿下我们这个 m 奖。好,下面是我们详细的演示,已经有美赛了吗?演示一下怎么样去用我们这个就是目前受众可能说最广的这个豆包和这个 deepsea 去完成一个美赛题目的一个解析。我以这个二零二五年这个 ct 为例,给大家演示一下怎么样我用这两个软件去完成我题目的一个解析,这篇这篇文章是用这个 ai 完成的,我这个文章在去年把它翻译成这个英文,它是拿了这个 m 奖,完全用 ai 去生成的,大家可以看一下这个 感觉 ai 上证的。好吧,教一下大家怎么样我能够拿到一个美赛的题目,把这个题目怎么样一步一步的拆解,把这个题目去解决出来,还能拿到一个不错的奖项。当然我还是建议大家在这个 ai 辅助的技术上, 自己也能够去进行一定的修正,画一些好看的图加进去美化一下,那我相信大家拿一个 h 奖以上应该也是非常容易的。好吧, 好,我们现在说怎么样给大家去演示一下,主要用的就是我这个给大家总结好的这个 提示词,我教大家怎么样去一步一步的去拆解这个题目,怎么去把这个题目写出来?这个提示词还有相关的资料,大家可以看这个置顶评论看获取,都是免费获取的。好吧,好,我们来看一下这个题目怎么去拆解。 首先拿到这么一个题目,首先我们可以拿到是英文,这个翻译成中文,你可以关注一些公众号,公众号上一般都会发,或者你等不及自己翻译,就把这个直接丢给英文,丢给 ai, 你 翻译出来这个还不是难事,你可以适当的进行一下的语句的修正,这都是可以的。 好吧,下面说这个,我们当然还是翻译过来以后再去做题。好吧,其实第一步大家是先翻译,翻译完以后相当于我现在这个题目一样。好,那我们怎么样去做题?第一步 先就是什么问题背景,我们就是以这个文章的行文为例,当然摘要是我们最后写好目录,肯定是最后生成的。好,第一步问题背景怎么整?生成这个直接我们看一下这个多少字,大概是七百六十五字,这个还是有点多的,为什么?因为我们最后要把它翻译成英文拼符,在二十五页 以内,我记得是你中文,相对于如果是二十四页可能会比较多,最后这个也是进行了一定的筛选好,所以说大家肯定要是先把这个什么刚开始要少一点,为大家推荐的就是六百字。好,我们来试一下这些内容其实可以直接用,是用这个 豆包去做就可以,我们可以把这个,你看我们可以把这个东西复制过来啊,你,你就可以把这些下面是说的数据了,这些东西就可以不用,也可以复制过来,这个影响不大。好吧, 我也可以把这个题目,就把哪一块内容,把数据,不是把这个问题上面的这些部分全部 像这些东西,关于数据的就可以不复制,关于问题的前面这些东西都可以复制过来,复制过来以后呢?你可以用我们这个指令,问题背景的指令,好吧,好,直接输给他,其实整体底下这个过程非常快的,好吧? 我们可以看一下,当然深度思考,你如果写问题背景,你完全没有必要去开看更快一点,但是也没必要,时间还是挺长的,你也不用说那么紧张。好,这是这个问题背景,我们可以看一下,你可以完全把这个东西复制过来, 我们可以看下这个内容还是写的非常好的,复制过来以后你可以放到这个文章里面,再放到这一块,这块就完成了。其实数据这个东西建议大家你可以这个东西你可以 直接丢给,也可以数据,这我没有。这个主要就是说你首先第一步你把这个数据有哪些,你可以丢给他,让他去写数据有哪些,还有表仪的这些东西, 下面还有这些,你看这个是直接复制的,你会发现了,你看数据文件,这个是直接复制的,一模一样,所以说这个东西就可以你自己写,也可以直接去复制一下,也没影响,因为最后还是要翻译成英文的,所以这个查重基本上没问题,美在不用担心这个问题。 好吧?第二个说第二步是写什么?解决问题的时候直接丢给 ai 写就行了,不用麻烦了,这怎么写呢?就会把这个这几个问题全部直接丢给他, 用我们的这个指令,这是三个问题,那就直接把这个改一下,好吧,这个你自己改一下呗,就是很快的,整个过程你会发现非常的行云流水,最后你再去精修,还整个过程非常的流畅,你会发现这个 行文是不是有点多了?可以,这个时候你就可以什么简化一下,你写美菜的论文的时候,你前期写中文的时候,你 自己心里有意无意的去控制一下字数是最好的,因为后面你还要筛选,还是会很麻烦的。好吧,看着他比较多了,你可以让他简化一下,这个是很灵活的一个过程,你看这样其实就非常简洁了,你就可以把这个复制过来放到我们这个文章里, 这个其实是有点多,后面到处也是筛选了很多的好假设部分,你就可以你把问题给他了,所以他已经知道你的问题是什么了,所以你完全可以直接再丢给他,一般就是四个或者三个选四个比较好。好吧,这完全就是让他给你去解决这个问题,还是你自己 去看了一下这个篇幅怎么样?好吧,你有意无意的控制一下,到最后你就不用说还要花费很多的时间去减字数。看这个还是有点多,因为他一般都会给你偏多一点,所以你可以自己去看着一点去简化,现在其实就非常的完美了。把这四个你复制过来,复制到这个里面, 这个可以加粗一下都可以。好,这个符号说明就不说了,对吧?你自己的事了。好,这个当然是问题分析,当然也还写了就是一条指定的事,就是这些东西其实 你要说哪一块是有你自己的思路的思想,其实还是一会我再给你说模型建立部分,好吧,你看这个东西还可以,这个篇幅其实也还行,因为问题分析你还是字数,字数其实可以了。好吧,这个是有点多。 好,下面就是具体的问题,具体问题部分我给大家有一个思路。好,我们看一下这个具体的问题,这个题目在说什么?在说什么?开发一个模型预测,所以在说什么?预测, 所以你不管他后面多么滑,他主要在说什么预测。那这个为大家提供两个思路。第一个思路就是说你是新手小白,你不知道哪些预测模型,你不知道哪个更好, 那你就可以什么把这个问题你要再重新去,一个一个的再给 ai, 你 不要再基于前面的基础,那样会不惊喜。好,这个时候你就把整个问题再丢给他,你可以问他解决这个问题,先写代码。 好,先写代码,为什么呢?因为你先看这个代码能不能跑通,他给的代码如果能跑通,那你就可以继续用这个模型了。好,这是一个对小白的措施,说我们可以直接用这个指令就可以,这个没有什么太,因为前面已经数据没有,一般 没有什么数据。这个,好吧,这个就是说给我使用什么样的给我解决问题的完整的代码。好,这个我给大家举个例子。 好吧?这个预测,这个也是个预测模型,这个预测模型可以直接用吗?可以,当然我建议你可以,如果你有自己的想法,你可以换一下,用自己想的这个模型,让他给你写代码,或者说如果你是小白,你就可以把这个问题抛给他, 我有哪些模型可以解决这个问题?或者说我怎么样去解决这个问题?让他给你模型, 好吧?当然我建议大家去有自己的筛选,好吧,就可以直接用了。他这个携带码还是现在他也很净化,基本上给你大烟扫过去也没有什么问题, 核心框架他肯定都是搭了尾腰。对的,当时我们这个代码也是用这个 ai 跑的,你可以看一下导数据数据清洗,对吧?好,你看下这个数据,这是什么数据?这个是他的运动员的数据,这个是下载的,你可以把这个数据下载一下,好吧?到时候你就最好的是什么?你把这个数据给他, 再给大家演示一下,你一个数据你肯定是自己下载的。对,你下载数据这个工作不难的。下载数据,因为题目你看他告诉你了,说这个数据是哪些,你看他告诉你了,告诉你这些数据了, 所以你这个东西你不难的,你把这个东西下载下来以后,你把这个东西丢给他,好吧?好,你可以把这个东西复制给他,告诉他说使用我真实的数据,其实,哎呀,这不这么很灵活,你要灵活的去用它 去随机应变。好,我们这可以再新建一个。好,他终于也是写完了,写的还是非常的完善。好,我们可以把它放到我们这个代码里面,这个路径应该都是对的。好吧,那这应该正好有, 我们来运行一下,测试一下,你看他告诉你了缺少酷,他会告诉你,你就可以安装一下就可以,这个不是什么大事。哦,我们安装完成了。好,再来看一下,我们刚才不是安装完成了吗?再来继续看一下。哦,不是,这个弄成之前的代码了, 刚才是我有点卡,我来看一下。好,应该是有问题的。这个问题主要是什么?说我们刚才其实刚才用的时候发现一个问题,这里给大家说的是先把数据传给,所以说其实你如果直接去把这个名字给他,而没有把数据传给他,他是很难去说把它 去做对的。所以我们尽量什么还是去把这个 ai 去,我们去把这个东西传给他,好吧?把这个数据尽量还要都给他,他了解这个数据的情况下,这个时候我们才什么才能 去更精准的把这个代码他可以编辑出来,否则其实他很难说去了解这个真实的情况,那可能就会出一些偏差。 我们先用这两个,因为你看一下他这个问题,其实他并不是说每一个题他都要用到全部的,你看他这个是还有这个,其实所以说每一个你要自己进行一定的筛选,看一下他会用到哪些数据, 好吧,我们这个就先以这两个为例,好吧,你我们再用这个,好,这个时候就对了,所以刚才流程其实还是有一点问题的,说你先要什么,这个这个多了其实影响也不大, 你可以先筛检一下,或者到时候你可以自己去删一下。那这个东西其实量有点大,但是他其实你只用前面的一部分也可以了,比如说我们之前没写一个代码,你看他只用了其中两个,还是比较少的,也可以把这个问题解决。 所以说另外一个你如果再遇到这个梅赛的题目,他可能有两种,第一种是说没有给你数据, 这个时候你要自己搜集数据了。另外一种就是说给他的数据,但是数据量非常大,这个时候你其实可以适当的去,如果不好处理的话,这个数据可以适当的进行一部分的筛检,或者你只提取某一部分去进行做。因为 其实美赛他对这个结果的看重并没有那么特别大,他可能更看重你,你解析的这个思路 是不是?所以说这大家一个思路说他数据量可能会非常大,那这个时候你就自己进行一部分的筛选,或者说有一定的代码基础的同学,可以什么自己去使用其中的某一部分提取出来去做,当然你也可以自己去什么编辑的这个代码量更大, 但是因为这个豆包它是对这个文件是有限制的,所以这个部分就要求大家可以只用一部分,或者说你可以自己去写提取数据的代码,后续让这个 ai 辅助一下,但你也可以用 jpt, 是 jpt 是 可以的,我记得,好吧? 好,这给大家提供思路。好,我们可以试一下这个。好,我们来试一下这个路径的问题,路径, 注意这个路径,因为我们就直接在这个目录下面的,所以说这个路径的问题你要改一下,这是成功读取了,当然也是有报错,但是成功读取了这个数据, 但是它里面有一部分是没有找到的,你们可以再把这个去你如果遇到的问题可以直接丢给 ai 去调试,如果你是小白,但是这个其实你 如果你有一定的技术,也可以自己去改一下。好吧,刚给大家演示的就是说你是纯小白,你怎么样去一步一步的去解决它,这过程可能会比较慢,但是 你其实也还好,教程完了。好,我们来复制一下过去,当然有他写代码过程遇到各种问题是非常正常的,路径一般是你需要自己去改的。好吧, 可以检查一下,因为 ai 它其实多包,其实还没有那么特别值得,所以大家遇到这些问题,你完全可以说 boss 复制给他,让他帮你解决一下。 好吧,这就是小白,你去这么去做,就给大家演示的时候,站在我一个纯零基础的一个小白身上,怎么样去解决这个问题?路径你改成你自己的路径,一般你就直接在这个文件下面放便会很方便,你就直接用它这个路径就可以了。 好,我们来看一下。本该应该是有错误来继续就说你这个过程就是你不断的发给 ai, 然后 a 改错就可以了, 这个过程其实就是一个不断的反复的一个过程。好,我们来看一下这次的情况,这个过程你不要嫌烦啊你,你要用 ai 给你写,肯定是这样的一个效果。 ok, 试一下,还是有列名错误,他是说哪个文件,我们可以看一下这个文件。好,我们这个时候就可以什么也可以把文件丢给他, 还要一直保存,你可以把文件再丢给他,让他看一看。这个文件是刚才说我们不用的,这样,我们改一下,好吧? 因为刚才我们说了不用那个文件,这个文件因为刚才我们说了他有点大就可以受限了,那我们可以这里,比如说我们只用这个两个,好吧? 就好。这就是刚才我给你说的,如果你有两种方法解决,一种是你自己有一定基础,你可以自己去编写,或者说你可以把这个大量的文件去给它进行一个删减,丢给这个呀,或者你用 gpt, 好吧,因为他这个是有他的能力是有限制的好吧?作为他演示给免费的这两个软件,他免费,他在能力方面肯定是有限制的,因为 gbt 用起来还是有低的门槛,好吧。当然这个用的这个流程是不变的, 所以你能用了 gbt, 那 也更好,你可以去用 gbt。 总而言之,这个流程其实都是不变的。首先就是这个论文的行文, 从这个背景到数据,到解决问题,到假设不好,你自己写就可以分析到模型的建立部分。整个流程你不管用哪个 ai, 基本上都是这个流程。 我让他给先写代码,代码跑通以后,把这个代码丢给任何一个 ai, 让他给你写这个内容,好吧?一个过程,因为那个文件它是太大,你没有一定基础是很难处理的,或者说你可以直接去 b 站上搜一下相应的一部分的教程也可以, 好吧,你毕竟想做的更完美,肯定是要多考虑一点。好,我们这一次来试一下,这次应该就可我来停止一下再重新运行,好吧,刚才这个问题是说这个图像没有中文保存的,这个问题 好,差不多前面这个报错可以无管他。好,现在差不多就运行出来了。好,这就整个的流程,这是这个图像也可以改一下上场了。好,所以总的来说这个过程就是这样, 你肯定会遇到错误。我给大家演示的也是说我在事先没有一定的排练的情况下,面对一个题目怎样去解决?这是错误,肯定是会经常出现的, 你其他的那种就是一下给你生成出来。那我想可能是前面已经进行了一个一定的预演,你面对一个实际的之前没有解决过的问题,那肯定是有可能会遇到各种问题。那刚才解决的方案我给大家提供了,把这个报错去给 ai, 让他帮你解决,一步一步的调试,到最后成功这样一个过程。好吧,代码跑通了以后该写论文了。好,这个时候干什么呢?那基于这个内容给你写,你看 把 ai 给你的代码重新丢给他,根据这个代码,这不用丢给他,因为刚才刚用的代码这个问题,这个步骤他给写,这个时候就该写什么啊?正文,正文部分 ai 都可以完成的。好吧。这些图可以自己去画一下,也可以去织网上, 比如这个 l s t m 模型。那可以去什么去知网上找,直接解锁 l s t m 模型,从它论文里面抠一些图,接下来放进去,或者你自己再复现一下这个图,好吧,非常完美的方式。 前面全部都是搬运工,这个过程也可以写的,其实也还行,你可以自己去找一些文献一下,加一些公式, 好吧,都是可以的。你像这些东西其实都是从文献里边 copy 的, 你可以直接解锁一下 l i c r 模型相关的文献,把里面的一部分内容可以 copy 过来,那就可以更完美了。 好的,这个文章主体部分内容的编解方法,你可以让 ai 结合你的代码去生成这个东西,也可以你去知网解锁相关的模型的文献, copy 一 些过程。好吧,你能自己手动结合一下题目那是更好。你不能那也可以了。 结果这些东西吧,你看这个结果不就是这个结果吗?一个图像结果没那么重要,你看这去年这个图这么样,最后也可以得奖。 结果生成出来以后,就比如说把你生成的结果给他根据这个内容给我写一段话的分析,是吧?你看这个分析一定要有上面结果,下面配分析,这个一定要有参与一个这样流程就可以。你可以把你图像放这, 再截个头像,让他给写分析,他用的指令是一样的,还是说根据这个内容给我写一段话的分析指令是一样的,好吧?好。看,这个写的篇幅也挺好的。 好,写完这些东西以后问题二、问题三是一样的,就不给大家具体演示了,这个流程都是一样的。好吧?好。最后到了一个知识点怎么写?把整个文章抛给他, 你再把这个指令附过去就可以了。最后写完以后再把整个文章给他,再用最后这个指令就可以了,我来给大家演示一下,好吧,完全 ok 的, 整个文章就 ok 了,当然这个数量你可以自己改一下。好吧,都可以, 我是给他写了一个四个的,当然他也可以用。这个就先不用了,其实这个流程是一样的。好,要登录我就不给他演示了。好,你看非常天赋也挺好的。好吧。 好,最后这个东西可以删减。好吧,可以自己根据篇幅删减改进推广,大家都可以写了,这样微信自己找就可以。好吧,这个路径你按照他的格式从翅膀上自己添加就可以。好,最后这个摘药也是一样的,就按照我这个指令也可以。最后摘药一定要什么 自己再精修一遍,你和你的队友每个人去修改,精修再精修是最重要的。好,自己的文章就到这。好吧。好,谢谢大家。

好的,小伙伴们,大家好,接下来我们讲 c 题哈,大部分同学呢,我看了一下后台的选择题数据哈,大部分同学都会选择这个 c 题哈, c 题的话呢,怎么说呢,你选这个没问题啊,同学们,我告诉大家哈,你选 c 题没问题,但是你必须要有创新啊,因为大部分的同学都在选这个 c 题,目前答题比例已经达到了恐怖的百分之四十哈, a 题百分之三十, c 题百分之四十,两个题目加起来接近百分之七十了,老铁们哈,百分之七十的人都会选这个 c 题啊,都会选这个 c 题 啊,所以说呢,我建议同学们哈,要慎重啊,其实我是非常不建议选这个 c 题的,我觉得吧,你就是大家大部分同学选这个 c 题都是为了图简单啊,但是呢,我告诉你们啊,图简单,不要去图简单哈啊,不要去图简单, 为什么呢?因为 c 题你看着哈,但其实它很麻烦啊,很麻烦 啊, c 题很麻烦,所以说,我建议你们不要去盲目的去做这个 c 题啊,不要盲目做 c 题,好吧,老铁们,我建议你们避开它,因为因为这样的话,获奖是比较难的,你不要图简单,大家说实话都知道,数据都知道,怎么建, 那你说对不对?你,你说你怎么获奖呢?你创业点怎么来搞呢?对不对?所以说,我不建议大家选 ct 啊,真的,我,我是真心的劝大家啊,要慎重哈,要慎重好吧 啊,老哥,选哪个题?我建议我建议选 a 题或者选 b 题啊,你最好就是选,要么选冷一点,冷门一点的,这样选的人少,竞争压力会小一点,对吧?你选这个 c, 那 么大家都选这个 c 了,所以当然了,我,我不说,不给你分析哈,我给你分析,但你要慎重,你想拿奖,你必须要有创新点, 你必须要有创新点,如果你做这个 c 题没有创新点,那就白搭了,而这个 c 题的创新点 百分之大部分的都是两种创新方案,第一种改进的模型就是你用改进算法去做,第二种融合模型啊,就你选择不同的模型一块来做, 你说交叉你行不行?交叉创新的话,在这个地方的话啊,也可以试一下。好吧,只能也可以试一下,因为我们创新模型的话一般就有这么几种方案吗?所以说这几种方案的话没法说,但是改进算法的话,我觉得在这个地方是最常见比较常见一点的,所以大家呢,如果想做 c 的 同学呢,你要慎重, 你要能够能有创新。好吧,你要有创新啊,真的哈,啥也不会,只能选 c 你, 那你,你不至于啥也不会,老铁们,真的不至于,你有 ai 了,理论,你没有不会的题目了,好吧,你没有不会的,而且 c 题呢,也没有那么简单,还是比较复杂的,大家都做, 所以说呢,就看谁做的好了,你想做的好的话,我觉得你和高手竞争是有很大的压力的哈,要有压力的,所以建议同学们呢,要慎重一点哈,要慎重一点 哎, ok 啊,这个这个大家呢要慎重哈啊,与这个题目的话呢,我们简单阅读一段的话,就是与星共舞啊,美国为美国,美国节目舞动奇迹啊, 然后呢,这个这个我们前面呢就是专家投票吗?专家通过什么在线投票?这是他们最喜欢的情侣啊,观众的话每周可以投票一次或多次,上下为当中公布的次数,然后呢,还有就是评委也可以投票之类的,然后选出第前几名来,对不对 啊?评委投票和得分和观众投票的组合方有多种,在美国版节日前两季采用基于排名的组合方式。第二季因什么什么啊啊, 然后,然后呢,就修改了这个争议哈,第二十四季又出现争议了对不对啊?评,尽管评委得分低,仍赢得冠军,作为回应,二十八级就说白了他的他的评分吧,是由评委和 评和这个观众投票来综合决定的。有的时候呢,评委觉得不好,但是观众觉得好,那观众投票多了,那么就有可能得得得这个最终的这个成绩了。但是,但是呢,又因为不专业,比如说一二流子一些选手,那么特别会讨观众喜欢,那也有可能对不对? 还有有有,如果,如果评委特别的占比权重比较大,观众占比比较少的话,那有可能这很多啊,迎合评委的啊,评委的角度不能代表大众的,所以有可能引发歧义啊,就来构建一个比较合理的评价的这么一个啊,评分的这么一个模型啊,这就是整个题目的核心哈, 来开发数学模型啊,估算每个选手在其参赛的每周获得观众投票数啊,就估算这个呢,就是一个基础的预测模型了啊,每个每个这个来,同学们,来,大家告诉我哈, 开发数学模型一个和多个来,你告诉我到底开发几个?首先啊,首先到底开发几个?这个是一个要点哈,到底开发几个? 你们记住哈,那就一定要开发多个。你想做 c, 我 还那句话,你必须是勇士,你必须要有胆量, 你必须要牛逼,对吧?要不然你要说你就开发一个,你开发一个非常基础的,你做 c 题,哪讲?我就这么说,你再创新也没有希望,因为因为选 c 的 人太多了,高手太多了。老哥这里统计了百分之四十的同学会选 c 了,都是勇士啊。说实话,所以你必须要开发多个, 而且多个模型来估算明白吧,来估算明白吧,你的模型估测关注投票结果是否能得出与每周淘汰结果一致的结论啊,提供一致性的衡量标准就是你要,你要能什么? 你要结果要准确,你不能结果不准确,对不对?确定性如何?每种确定性这个就需要有验证了,就你的结果也有验证,说白了我我告诉大家哈, 真的,这个地方就看谁的模型精度高了,但是你们记住你们的精度啊,很多情况下来大家告诉我,来来,我问一下哈, 我问一下哈,来,这个的话你说老哥,我不单纯的用美赛官方给的数据,我用别的数据来佐证一下,可不可以?老铁们,就是我用一些达人秀,或者我用一些别的投票的一些结果来做,可不可以?老铁们,别的投票的模型来做,可不可以? 可不可以?老铁们,你们跟我说完全可以,反而会把你的模型的这个精度啊,反而会提高的比较高。来这个地方一定要注意两件事一定要注意两件事哈, 一定要注意,除非他明确的说了啊,你可以看了没,你可以自行选择纳入信息或其他数据。看了没?其他数据,但必须要记录数据来,同学们, 我这地方要注意两件事,第一个叫什么过你河,第二个叫欠你河。来,你们觉得哈,你们觉得你们最容易做预测模型的时候最容易出现的一个问题是什么啊?最容易出现的一个问题是什么? 就是你们如果来做这个题目啊,后面会有啊,我会讲到啊,你不用担心啊,啊,你会讲到来 你们容易出现了一些问题,什么做预测的问题,做回归问题啊,过你河,我告诉你们,你们最容易出现的就是过你河了,真的,所以说你们一定要注意一点,好吧,不要出现过你河 啊,这个很关键啊,很多同学呢,做预测经常会出现过你和还有同学这么这么来做的哈,来,还有同学这么来做的,我们来,来啊,我,我后面会讲到哈,这里有一个完整的看了没?完整的来 看一下啊,来,看到没,他有一个完整的解析思路,第一步,一定要做数据处理。第二步, 观众投票预测构建贝叶斯啊,这是基于概率的模型,以评委得分、选手特征周次为自变量,以淘汰结果为约束啊,预测观众投票数,预测知信区间。来这个地方呢,很多同学这么来说的, 我看你们的方案了哈,你们说老哥我预测他的投票得数,那我这样不就行了吗?啊,我,我这样不就行了吗? 来,我直接就是用他每前几个周的得数预测他未来每个周的得数,可不可以?老铁们,原来这样来说的哈,我用他前几个周的得数来预测他后几个周的得数 来。老铁们,你们觉得这样的行不行啊?你们觉得这样行不行啊?我刚才有同学在上面是这么说的啊,在评论区留言啊,包括在那个老哥私信我这么说的,行不行?老铁们,行不行啊? 为什么啊?包括你们告诉我为什么?我告诉你是百分之百不可能的,不行的哈, 你别乱搞哈,你记住哈,投票结果是未知的,严格保密的,你不可能说用这个是吧?哦,前一个数据来预测未来几个周的数据,你就你就,你就完整的变成时间序的预测了, 知道吧?你是不可能的啊,你,你别乱搞,你别乱整哈,你别乱整来。 但是我可以构建一个什么样的模型呢?老铁们告诉我,既然如此, 那我就不能用时间虚的预测预测了,对不对?但我可以用什么预测来,我要我现在要做的一个一个参数叫什么?观众投票数,他和很多项数据有关系,包括什么评委的得分打分,包括一些其他的。哎,这地方有哈,包括其他的 看啊,哎,在这地方包括他的年龄,包括行业啊,包括一些是吧?他的这个,这个是吧?这个这个选手的一些特征,包括他日常的动态,包括一些其他的淘汰的一些结果。来 来,同学们告诉我来,我相当于我要预测一个指标,它和若干个指标有关系。那你告诉我要构建的是一个什么样的模型啊?啊?要构建的是一个什么模型啊?这是这种预测方案,不叫持续预测,这叫什么预测?老铁们, 哼哼,叫什么预测呀?到现在啊,大家都提出了有用 xt boot 的 啊,随机森林对吧? 这就是回归吗?对不对啊?某一个变量和若干变量有关系,不就是回归吗? 是不是?那不就是回归吗?所以说你这个地方既然构建回归,你们就记住我刚才就要返回来,我刚才提到那个那个逻辑了,不要出现过你河,也不要出现欠你河,好吧,过你河就是你回归的模型,太美完美了。 来,你告诉我这种未知的投票数量的能过于完美吗?老铁们,所以说谁的预测的模型的精度达到百分之百,你反而应该要慎重了,你百分之九十六九九九你都要慎重, 你的精度不可能那么高的。我可以告诉你哈,因为他是未知的,而且这两组变量之间理论上没有什么必然的情况, 不能说他评委得分就高,他观众投票就高,对不对?也不可能说,但是呢,来评委投票高,有没有可能观众投票也高啊,也有关系啊,也有可能啊,那评委投票高,有没有可能观众投票低呢? 也有这个可能,对不对?所以说哈,这里面比较麻烦,比较复杂, 你呢,一定要慎重啊,一定要,一定要考虑,就是自变量和一变量之间没有很强的关联度,没有很强的关联性,这个是很关键的哈, 明白吧,做这个做回归理论者是一个大忌,就是自变量和一变量之间没有很强的关联性,我们说这属于大忌,但是呢, 不代表说他俩没有关系,往往会呈现一个啊,就是典型的比如大部分选手可能评委投票比较高,观众得分也会比较高一点,只是说有一个大概的对不对?但是你要考虑极端场景之下的一些情况 啊,因为因为前面说了吗?对不对?来前面说了,以前面已经给你讲了很多了,对不对?说有有可能会出现专家评分高。所以说呢,这个 第一小问啊,我建议你们不要你合的精度太高。好吧,不要你合的精度太高啊,太高了确实会有问题的哈。来 第二小问啊,利用你的观众投票结果估算结果和其他数据比较和对比节目使用的两种投票方法,排名反而百分之在各季产生的结果是吧?就每一季对应的两种结果,如果结果再查也其中一种方法似乎更清,更似乎偏向于观众投票, 对吧?就是比较吗?对不对?和个体产生的结果比较结果的结果,如果,如果结果存在差异,那么其中就哪一种方法可能会偏向接受投票,说白了就是看看哪一种方法和观众投票的相关度更高吗?对不对? 然后考察这两种投票之外存在两种投票方法存在争议与观众或观众意见存在分析的特定选手的拥有情况,投票组组合方法的选择是否会导致这位每位选手的结果相同,是吧?每周什么什么的啊? 然后呢,咱们就那个一考虑一些具体的视力,把你建立的模型,再把具体的视力,然后呢这个考虑进去,然后呢,利用包括投票观众估算结果,在你的数据开发、模型分析、专业舞者以及数据中可用的名人数据的影响 对不对?这些因素对名人在比赛中的影响有多大啊?说白了就是你前面不是估算了一个观众投票的模型吗?对不对?利用观众估算投票结果在你的数据啊, 开发模型,分析专业舞者以及数据中可用的名人特征的影响啊,这些因素对名人在比赛中的表现影响有多大啊?

好,大家好,那么本次美赛 ct 幕完整的原创论文啊,以及这个 q 一 到 q 四所有的代码结果啊,可视化已经全部完成了啊,那这个视频呢,主要是给大家做一个进度的通知啊,和后续更新的就说明 啊,因为有很多学员啊,包括这个有很多人在问啊,就是说这个到底什么时候能更新完毕?那么之前给大家通知一下,就是目前的 c 题目是已经更新完毕了,然后 a 题目呢,目前还在这个论文的收尾的阶段啊,包括这个代码呢,我也在最后的呃,去给大家去做一下调试。 好,那么或许等这个 a t 木啊,这个完整的成品呢,也全部更新完毕之后啊,那么这个预计会在今天的下午啊,三点半左右,我我就会更新完毕。好,那关于这个 a t 木和 c t 木完整成品的说明呢,大家可以看这个视频的评论区。呃, 至于说这个完整的啊,论文和代码的讲解啊,就是每一个我们论文应该怎样去编辑,然后呢应该得到什么样的结果啊,包括这个格式化应该怎么去做啊,这样的一个视频呢啊,就跟我往期比赛一样的这个完整的讲解视频啊,保姆级别的教学视频呢,我预计会在 傍晚左右才会给大家录制完毕,因为这次这个 ct 梦呢,确实非常复杂啊,分了非常多的子问题,呃,选这个录之前呢,也比较费劲儿一点啊。呃, 大家等我这个完整成名的讲解视频吧。好吧,那么这个视频呢,只是给大家做一个进度通知。呃,然后啊,大概给大家看一下这个 c t m 的 这个摘药,大家可以自己暂停去看一下 啊,包括这个的目录部分,大家自己暂停去看下这个目录部分,看下我整个文章的这个和主要的流程是什么样的啊?其实第一问的就是我前面跟大家讲过的,我记忆毕业时推断的这个粉丝投票打野模型啊,其实也是这个 mc mc, 然后第二问是做这个反事实模拟框架,呃,然后呢?第三问是做这个两极段的技巧归音模型啊,然后第四问呢是做这样的一个评分系统的优化模型,我是起初提供了三种这个模型啊,也就是策略。 那么我这里分了很多个二级标题和三级标题,因为这道节目呢又非常多啊,我们要去具体纠结的小的目标,那么针对每一个小的目标呢,我们都要给出具体的解答,这个我就给大家详细去讲,好吧啊,等我傍晚的这个完整成品讲解视频吧。好吧 好,那就说这么多吧,以前在我家遇见过这个完整成品的人呢。啊,你们确定好自己到底要选择哪一道题目?好啊,就这样。

好,大家好,那我明天早上六点钟呢,二零二六年的美赛就要开赛了,那本期的美赛呢,我也会跟以往的啊,所有比赛一样,会在啊开赛之后就会给大家发发布一个选集建议以及个体思路的这样的一个视频,那么之后呢,就会选择其中两道题目去完成他的完整原装论文以及相应的代码和结果。 那么比如说你看这个二零二五年,我做的是这个 c 题目和 b 题目等开赛后呢,会发布这样的一个视频,哎,之后你就会有一个每一部分代码结果以及格式化,包括完整原装论文的这样的讲解视频。 那么啊,这个二零二五年是 b c 题目,二零二四年那么做的是这个 c 题目和 f 题目,然后呢,二零二三年啊,我做的是这个 c 题目和 e 题目。好, 那本次比赛啊,二零二六年的美赛呢,我也是一样,我们团队一共是九个人呃,均是获得过国二或者美赛 m g 以上的双月硕士。那么开赛中呢,会嗲嗲之之内就会发布的选题一件以及初步的思路视频,之后呢,就会去完成其中两道题目的完整成品,那么我们大概就是 x m 和 s m 各做一道 关于届时这个完整成品的说明,大家可以看这个视频评论区啊,之后呢,就会到这样的一个文档链接里面去啊,大家也看到左边导航栏里面,我已经把大家可能会关心到的一些问题啊,全部都有跟大家去解释清楚 啊,包括这个选题型的哪样浓轮的时间啊,包括啊查出问题啊等等这些东西,那么这个视频呢,我就去跟大家详细的讲一下啊,届时我们提供的完整成品的说明啊,以及呢去给大家详细的看一下往年我们啊的这个美赛提供的完整成品的说明啊,比如这就是去年的 b 题目, 那么这里是前年的 ct 木打,包括所有的这个代码啊,我也会给大家去展示,就是往年我提供这个代码什么样的形式,大家到时候怎么样去运行,我都会在这个视频里面去给大家讲清楚。好吧,那么请大家务必耐心的把这个视频仔细的去看完,那么相信呢,呃,这个完整成品呢,可以大大的去提高大家的获奖概率。 好吧,那我在我的空间里面呢,是已经有累积长达四年上百场比赛,上千个学员,全部啊,所有学员的这个完整的获奖记录呢,我全都是有总结的啊,这也是全网唯一一家敢让任何人公开访问的。 那比如说我们来看一下二零二五年的美赛,最终一共是两个 f 奖啊,就是在我的学员里面啊,就是拿了我这个完整成品的人里面是两个 f 奖,然后六个 m 奖以及若干的 h 奖。呃,大家可以看一下,这是二零二五年比赛我当时发的这个总结记录啊,大家可以看一下二零二五年的五月二十号发的,那么这个呢?学员的, 呃,四和五呢是 m 奖啊,三是 h 奖,那么这个学员十呢,他是一个 f 奖啊,他们学校的这个 f 和 o 的 学分数是一样的加分,然后这个学员十次呢,也是一个,大家看一下也是一个 f 奖,好, 那么这个呢,就是当时在组做比赛期间啊,我发给他这个,包括这个梅赛 c e 的 打包文件啊,就是我这个完整成品的参考文件啊,那包括呢?相同说明视频代码出错、附件视频等等这些东西,那么稍后这些东西呢?具体这都是些指什么东西啊?我也会,也会在这个视频里面就给大家讲清楚啊,在这个成品包括什么这个栏目里面我会给大家讲清楚。好吧, 那再比如说一些其他比赛的,这是二零二四年研赛,这是学员是一个国一啊,这学员是个国一啊,这,这是二零二四年的美赛啊,是一个学员十七是 h 奖,那么学员十八呢?是一个 f 奖,葡萄奖提名 这个学员是一个 f 奖。呃,他们的助攻模式主要有个论,就是说必须在每一个每次都有一个人开头啊,他就是说呢,感觉我每次的速度都能带得动他们啊。 那么二零二二年国赛啊,这是二零二年国赛的总结,二零二三年联赛的总结啊,那么具体呢,就不给大家多展示了。好吧,这样大家有兴趣的去访问我的空间就可以了啊,那么在我的空间里面呢, 这四年来所有的比赛啊,上千场比赛,我全部都有总结啊,这可能是显示的 bug 啊。没事,我一会给大家拖动看一下,比如这是二零二二年啊,十月十号我发布的这个,我这个置顶说说啊,这是二零二二年的,给大家展开看一下吧。 呃,这个一到七呢,是一个第一次参加拿了一个省一的一个学员啊,他是拿了一个省一,然后呢八到九呢?是一个推入到国家答辩的,来问一下这个答辩的问题, 那么十到十二十一呢?是一个省二啊,那我就给大家看下其他的吧,比如我昨天发布的这个啊。 呃,那么还是那句话,就是我的空间里面呢,有所有的,我往期接四五年来所有学员上百场比赛啊,那么上千个学员所有的获奖记录呢?我全部都是我总结的啊,那么比如这是我昨天发布的,一月二十八号发布的吗?这是二零二四年美赛,学员是拿了一个 m 奖,那么这个学员在我这里也是做了 很多个比赛了啊,这个呢,我当时他做了一个小比赛,是拿了一个国一,我们后来呢,主儿美赛是在我这拿了一个 m 奖啊,这是当时二零二四年的美赛,二月三号我发给他的这个打包文件,含计相应的一些其他的视频。呃,那这个, 这个二零二五年国赛的学员二十八啊,这是我二五年八月二十九号发给他的这打包文件,他是拿了一个什么,然后他来预定这次的美赛 啊,这个就有很多了,我就不能一一个一个给大家展示吧,总之呢,我自己滑动一下,大家也能看到啊,是一月二十三号发的,给大家往后面拖拖拖一点。好吧,来看一下我们去年美赛成绩刚出来的时候,我是怎么发的。 呃,去年美赛成绩应该是四月多,还是说应该是四月多发布的?五月发布的,五月发布。好,那么当时发布之后呢?我五月八号就发布了这个总结的啊,这个说说,当时呢,五月八号的时候报喜的一共是有一个 f 奖和若干个 h 奖, 那么这个学员一和二呢,是一个 h 奖啊,这是当时去年因为我做的是 b 题目和 c 题目嘛,那么就给他发的是 c 题目啊,他是拿了一个 h 奖,然后呢这个学员啊,看一下啊, 看一下,给他发他也是一个 h 奖。好,那在网上看一下啊,比如说这个啊,爵士学院五是一个 m 奖,大家看一下。好,这个学员呢是拿了一个 m 奖 啊,这是当时美赛也是一月多的时候啊,发给他的这个梅赛 c 的 打包文件。这个去年是一个奖牌得分点的变化嘛,他要后面是有些答疑,就是说这个变化点的得分是怎么算的啊? 那么学员五呢,也是一个 m 奖啊,这是当时我来看一下他是他选择是 b 题目啊,因为去年做的是 b c 题目,我 b 题目呢,当时他是有问这个,比如说这个座驾坐标指示是啥啊,包括这些东西也是当时的 n 记录。那么他当时每赛呢是一个 m 奖啊,包括一些其他的,比如说这个,这个学员应该是个 f 奖啊, 这两个是 m 奖,然后这个是有一个 f 奖,然后包括其他我就不给他多展示了。好吧,我们大家在我的 qq 空间呢,都能完整看到。好,那么接下来给大家说一下,这个完整成品都包括一些什么东西啊?啊?在之前我再给大家讲一下啊,呃,一些其他的东西, 这个呢,我们现在每次比赛呢,其实老学员的复购比例基本上是在百分之七十以上的,包括本次美赛呢,大部分的人呢,大部分都是在我这已经学习过其他比赛的人啊,其实呢,新来的这个学员呢,是非常非常少的啊, 真的基本上已经都是在我这做了好几个比赛了啊,包括有学员在我这做了十几个比赛的,也有一次性就做预定四五个比赛。 那么接下来我还是要感谢一下啊,用这个视频感谢一下大家这些老学员的信任啊,认可。好吧,那么这也是对我们助攻指标的一个最好的证明啊,感谢大家的认可。好,那么接下来给大家讲一下这个成语包括什么东西。那首先是呢,是有一篇完整的原创论文,这个格式呢,是大学的 pdf, 那 么在这个 啊,我这个视频展示就给大家展示这个 p f 啊,就以这个 word 形式来去给大家看了,比如二零二五年美赛的 b 题目呢啊,呃,这就是我当时美赛 b 题目啊,一共是五十页的一个完整成品,那么当时呢,就包括这个摘药问题,如入问题分析,我先假设符号说明节目每一问的模型建立于求解。 那么去年的这个 b 题目啊,是这样一个诸诺市旅游的问题啊,大家可以看到呢,这里面我有发表论文,包括每位的目前建议群里面,大家可以看到的,里面包含很多个二级标题和三级标题啊,那么呃,这是因为呢,我要有非常有条理的把整个这个论文呢 啊,全部给它清晰的写出来,包括呢,每个问题里面当然会有将来如果很多个小的问题,我每个小问题都是需要去具体的解决的 啊,比如说,但是问题一呢,怎么?当然首先要去构建这个优化问题了,我后面呢,是这个实际的囚禁。呃,在优化问题里面呢,包括模型啊,目标函数构建,约束条件以及反馈机制的建模。那么包括第二问, 用模型适配和黑广的差异化因素的识别,按照编量以及参数的调整及模型适配的演示,包括影响重要性的分析啊,动态平衡策略啊及问题三,我去年的问题三呢,是要求有一个备忘录吗?对,好,包括整个论文里面,我也会有非常多的黄字提醒大家如何去进行修改,像虫,包括一些论文篇幅呢,也是显得比较长一些 啊。呃,好,那么放大给大家看一下这个论文的剧情是吧?好吧,以去年 b 题目为例, b 题目为例, 那么这里呢,是去年 b 题目的这个摘要部分啊,这是 b 题目的目录部分啊,这是问题重述及问题分析。好,那么这里是模型假设啊,然后呢,这是模型建立于求解部分。好,大家可以看到。好,那么这里呢,就是代码运行的错误的一些图片。 好,那么我来看一下啊,这五点一点三的一个模型灵敏度分析,大家也知道呢,美赛呢,对于这个模型灵敏度分析要求是比较严格的,那么基本上,呃,大部分需要去做这个, 就是能做这种灵敏度分析的啊,这个题目呢,基本上都要去做,所以呢,这个,这个不啊,栏目呢,我当然也是必不可少的啊,我基本上都会去做这个灵敏度分析啊,这里有灵敏度分析。 好,然后呢,这里是问题二,问题二里面的模型建立,然后这里是结果啊,好, 再来给大家看一下去年的 c 题目吧,那么 c 题目呢?去年比今年呢啊,去年这个 c 题目呢,比 b 题目是要稍微难一些的啊,所以整个这个篇幅呢,要比较长一些,因为它里面呢处理的东西太多了啊,就是大家可以看到呢,我这二级标题和三级标题分的非常多, 那么去年呢 b 题目呢,我也给大家奉它看一下吧啊,它 b 题呢,去年是一个这样的一个奥林匹克奖牌的模型啊,奥运会奖牌的模型, 这里是摘药部分,那么这里是目录部分,目录分大家可以看到呢,呃,问题一里面包括数据处理,然后去做格式化,然后构建一下这个预测的模型, 然后呢去进行一个具体的实现啊,去提取他的特征啊,然后去训练他的分类和回归的模型,然后后面是预测他首次获奖,然后呢再做赛事分析,模题二里面呢是做这个引入了一个贝耶斯变化点的检测啊,然后后面还要分析这个教练的贡献度,重述分析和假设,就给大家多说了啊,这是符号说明部分 好,包括呢里面会有很多拱王集体去告辞一些会员的说明,这个答案呢也都务必要去落实。就这个视频呢,也是给呃目前已经在我的预定过这个完整成名的人呢,给出一个指南啊,就是到时候你们拿到这个成品应该怎么去用啊?这个视频呢,也不必自己去看完哦。 我在这里建议大家画一个流程图,好吧啊,这里是做一个模拟器去处理,那么第一位呢,我们首先去做成数据处理啊,做一个数据清洗啊,这个就不用给他给大家多说了吧,这后面包括呢,这就是获取的这些图片。好, 那么除了这个论文之外呢,第二个就在我用借账过程中用到的所有的数据处理的表格和结果表格,包括代码,那么在代码部分呢,我们百分之九十五以上的概率,那本身每站呢,也会依然去采用 python 去进行纠解啊,那么这个呢,我们是采用 notebook 去进行编辑的, 这个呢,当然如果说不会 python 代码的话,也没关系啊,也没关系,我会给你代码的一个完整的运行操作视频,那么大家继续去看就可以了,那么零基础也可以完全的去跟着我的这个操作视频去运行,是很简单的,在运行工具方面呢,只要是支持运行 notebook 的 啊,呃,就可以了啊,比如 sps pro 啊, java 啊, py 叉门啊等等,这东西都行,但你即使门打开或者知道你的 python 不好也行啊,但是不太建议,因为这个呃知识弄得不可学的工具呢,看起来比较直观一些,也简单嘛,对不对啊?那有人说我没,我一接触过这个 python 代码怎么办呢?我完全不会啊, 无所谓的啊,无所谓的到上头你根据我这个代码速度视频来啊,你就直接打开代码就能看到这样的一个东西了啊,比如这是我去年每站 ct 的 代码, 那么这就是我,大家可以看到正好是一年前,对不对?一年前创建时间二零二五年一月二十六号,这是去年我美团的这个 ct 的 代码和结果表,包括中间预处理的所有表格,那么这就是代码部分,这是 q 一 啊,这是 q 一 的格式化部分,那么这里是 q 二。呃,打开 k 局给大家看一下,这里呢,前面是安装库, 呃,包括这个,怎么安装库?这个呢?我的代码速度视频呢,也有给大家去讲啊,其实呢,你无论是零基础,哪怕是高中生拿的代码速度视频也能给大家去讲啊,其实呢,你无论是零基础就可以操作这样的一个版本, 但如果你要是会拍成会弄图的话呢,那当然更好,对不对啊?我支付呢,你不贵,零基础呢,也无所谓啊,运行就完事了嘛,只导入一些数据啊。哎,这就是先去做这个数据处理清洗,这是去年的这个代码, 然后呢,我做了一个音设表,然后提取数据,然后进行计算特征的提取,然后呢啊,这只是做预测,这只是一些混合矩阵,这是分类预测嘛,这是混合矩阵图。哎,这里是这个 数值的预测部分啊,回归预测,哎,回归预测啊,特征重要性的排行。好,那么这里后面是啊,得到一些其他的结构表壳啊,这里是获奖概率的分布,大家都是题目要求的啊, 然后包括说后面有计算得出的这个奖牌的相关性和项目变化的相关性,哎,也得出了,那么后面呢,包括各项目和奖牌数的相关性也得出了, 然后呢,绘制他们的奖牌分布情况全部恢复至了啊,那么整个呢,这个绘制的图片呢?呃,形式呢,基本上是以尼手入门的这样的一个科研任务要求的啊,所以呢,来个看到这个图标呢,也是比较精致的,这是 q 一 的格式化部分哎, q 一 的格式化部分,然后这是 q 二的一些代码, q 二的一些代码, 这应该是去研究那个教练效用的啊, q 三是写一个备忘录就被他展示了,对吧?那再比如说啊,啊,这里是二零二三年 c 写的论文啊,他是当时一个打网球试图得分的一样的一个模型啊,这会我就不用给大家多展示了吧,比如这里是这应该是当时二零二三年 c 题目的一个代码啊, 大家看正好两年前吧,两年前啊,两年前的这样一个东西,好就给大家多展示了,好吧,总之呢,本次美赛我们提供的形式呢,依然是这样的啊,或者给大家给大家一这样一个拍摄的代码啊,那么当然呢,直接根据我这个 啊操作一些视频去操作就可以了,然后呢就会有一个讲解视频,那么这里呢,首先是有一个公开的版本的讲解视频,就是在我的 b 站上面会发布的 啊,这样的一个公开的视频里面会给大家讲一下整体我这个论文是怎么去完成的这样的一个思路啊,包括疑问的代码和结果的一个展示,当然这个展示部分呢,我是会进行打码处理的啊,包括一些重要的代码结构,重要的结果图片啊,包括论文中的这个展示呢,我都不会去完整的去给大家展示啊,这个公开版的视频呢,只是,呃,给大家讲一下这个思路具体是什么样的, 呃,因为我要保持这个限量嘛规避查虫问题好啊,所以呢大家也不用担心这个查虫问题啊,因为我 啊陪我四五年这以来啊只要是按照我论文中黄黄字提醒以及我的啊副这个降重出名视频啊去操作你的人呢啊是没有一个人出问题的,包括去年每三年没有任何一个出问题啊,前沿大前也是。好吧好那这是一个公开讲解的视频啊,最后呢就是一个降重教学视频以及操作的副线视频, 那么这个呢主要是让拿到论文的更好去理解论文中的结果如何去进行复现以及这个论文呢如何去进行修改成虫。因为我这个出的成品呢也是一个限量的成品啊,所以我会特别录制一个降重教学视频以及一个复现论文中所有结果的代码错漏付错漏视频 零基础也能看懂。然后接着呢我会和这个整体论文呢一块发放给你,请务必对照这个论文呢仔细巡查啊,那我这个参考成品呢是一个限量版本啊。呃还有一句话我前头不是给大家讲过了我是一对一的帮大家去做啊 呃 k i 型的务必注意好吧啊那么关于这个文档链接里面的一些其他部分包括说这个信用问题啊,查重问题啊啊是否报答奖啊这些大家自己去看我这文档链接就可以了啊。呃这个呢便捷的还可以玩啊,可以占这个 y g 完整成立的数呢大家可以看这十人的评论区好吧 ok 那 就说到这里吧。呃本次美赛啊我会跟去年的比赛刘冲呢是一模一样,会给大家带来这样的一个助攻。呃呃,大家等明天早上开赛吧啊,六点钟开赛之后,我就会第一时间发布全天 e 及作题速度视频,之后呢也会去实践的去完成其中的两道题目 啊,中兴兴盛呢,我这个视频呢也应该给大家讲的很清楚了。呃,希望到时候能够帮助大家获奖吧。啊呃,再创去年前年大前年美赛的这个辉煌啊,去年呢是两个 f 六个 m, 乐观的意识讲啊,希望今年呢,呃,大家的获奖情况比去年更好更上一层楼啊,希望大家呢都能够 拿到满意的奖项吧。好吧,呃,就说到这里吧,希望能够帮助到大家。那么关于这个美赛技术,我会出到这个完整层面的书门呢,大家可以看这个视频的评论区。好呃,就说到这里啊,谢谢大家。

小伙伴们大家好,最近好多同学都在找 a t 的 数据哈,老哥呢,给大家找了一份 a t 的 数据哈,数据量是非常非常庞大的哈,这就是一个 啊,锂电池完整的一个功耗测试,以及在不同的电池状态下的一个功耗测试的这么一个啊,数据哈,这个数据量还是比较庞大的哈,比较庞大,来解释一下这个数据哈,它包括这么几个部分 啊,第一个是主数据啊,有非非常的大啊,非常的大这个主数据表啊,然后呢,这个是数据文档说明,这个数据字典就是每一个啊,数据集里面啊,他每一个代表什么含义?比如 工号手机,工号测试编号,第几部手机啊?电池什么状态啊?是老化的还是什么的啊?电池数据集的编号,电芯编号,老化状态, 工号 soc 啊,然后组建各种各样的工号导热系数,然后呢,颜色通亮,能量通亮啊,各种各样的内容还是非常非常多的啊,完整的一个电池测啊,工号测量的这么一个数据啊,这是一个表格 啊,说一下这个数据它是由怎么来获取的啊?是由两个数据集来获取的,第一个呢叫真实数据啊,这个这个就就第一个呢,叫工号测试数据啊,手机工号 一一千次的移动设备,在不同的状态,不同的场景之下的工号的测试情况,这个在网上都能找到哈,相关的啊,我们给大家整理好了,在这个地方哈啊,在这个地方,原来数据啊,一个是这个,一个是这个哈,这两个数据集呢,内容都都比较庞大哈,都是都是在公开渠道能获取到的啊, 然后呢另一个叫锂电池老化数据啊,指的是在一些啊,他的这个不老化的一些退化数据啊,两类的锂电池的老化退化数据哈啊,包括里面的各种锂电池的一些状态啊,相关的一些老化的情况啊,是是轻微的还是重度的还是怎么情况啊?都给大家整理好了,也是在这个位置啊, 然后这两个数据集呢啊,分别都有原始文件记录哈,原始文件记录啊,都在刚才说的这两个地方啊,都两来源呢,在这个位置啊,来源在这个位置啊在这里。 然后呢那么首先呢需要对两组数据做预处理哈,需要对手机工号数据这他的一个预处理过程啊,包括单位划算啊,合计工号,还有就是合计能量代理之类的一些相关的计算,还有电池老化数据,他的一个预处理过程是这样的哈,预处理过程, 然后最后呢我们拼接了一下,为什么要拼接呢?因为我们想要得到的是不同的电池的老化的一个一个情况,比如说锂电池吧,全新的,他的功耗是怎么样的? 哎,已经半全新了,就半新了,他的功耗状态是怎么样的?是吧?已经接近报废了,他的功耗状态又是怎么样的?所以说做了一个低壳耳机啊,低壳耳机的一个计算哈, 为什么要做这个迪卡尔机的计算呢?因为他没有一个共同的拼接的一个方式,比如说测试编号啊什么的,这些都没有,好吧,一个是手机工号啊,一个手机工号,一个是在电池衰减, 所以说我们想得的是在不同的电池全新状态下的这个手机的工号数据,那么这个呢,只能做一个拼接啊,最终得到了一个主表啊,一共有三万六千行的一个主表,就 九十三列啊,九十三列原始字段呢?就是就是原来的两个主表中带的字段,一共有六十九列,还有电池的状态字段,指的是电池到什么状态了,全新半新之类的,是有十五个字段,然后派生出来的列呢,还有一些派生派生的字段啊,派生的字段, 然后变量的一个定义在这里哈啊,在这里每一个变量他都有一个定义,你们可以找到哪些啊?一变量对这个手机功耗影响比较重啊,比较重要或者哪些是哎,他们这样的逻辑关系,那么就可以构建出来相关的微分方程了啊,这样的一个关系,这个数据集呢,还是比较全面的哈,大家想要领取的呢,可以看一下啊, 资料还是非常非常多的哈,一共三万六千行的一个数据哈,然后这样的话呢,每一个数据测试,比如说零吧,就是第零啊,就定就是那个 第零个手机测试,那么他有三十六行啊,三十六行啊,三十六行,三十六行分别就是那个,就是那个电池,是电池那个状态吗?全新还半新的那些状态啊,那状态他一共有三十六个数据吗?对不对?两者一的卡机就是一个一千的,乘以一个三十六的,就能得到一个三万六千行的一个不同电池 全新状态不同电池状的一个工号数据吗?那么这个数据字典在这里啊,数据字典 可以看一下啊,注意字典啊,内容也是比较丰富的啊,注意字典啊,不同的一个电池说眼状态下,他的一个详细的一个情况说明啊,在这个位置 啊啊,如果你想要自己处理,比如老哥我自己去处理一些数据也可以哈,你把原始子弹啊,然后把它解压出来 啊,里面内容呢也比较全啊,井三井四啊,分别代表不同的这个数据集啊,你也可以把它整理出来,整理出来,自己呢,去去人为的去啊,自己的再重新派生出来别的数据集啊,整理整合成别的数据集也是可以的,也是可以的。 ok 啊,这就是给大家找的啊,一个数据集哈,二零二六美赛的一个 a t 的 一个数据集啊,大家呢可以及时的去去那个建模啊,不要因为找数据耽误了自己的时间以及数据来源,到时候呢,你要你要很多学生想学我的数据来源来源于什么地方,你也可以放上去啊,也可以放上去 啊,同时的话呢,还有一些其他的数据集哈,比如说这个丰田又研究院啊,电池数据集是吧,牛顿大学电池驾驶循环数据集,还有一些充放电的电池数据集,马里兰大学电池数据集啊,各种 nasa 锂电池数据集啊,里面资料是比较多的啊,相对来说。