粉丝2.3万获赞10.7万

展开图,博士,我最近练了个新技能,三秒做成礼物盒, 是不是很炫酷?其实啊,这里可有个小诀窍,你看,这个礼物盒是个正方体的,没折叠时,礼物盒的几个面展开,躺在这里,这个图咱就叫它正方体的展开图。 如果将展开图折叠起来呢,他就又可以变回正方体。那你试试将这个图形折叠,能不能围成正方体呢? 是不是怎么叠也叠不出来正方体啊?那是因为正方体有六个面,刚好是三对相对面,而这个图形找不出三对相对面。 也就是说,一个图要想折叠后围成正方体,就得在这个图上找出三对相对面。怎么找呢? 你看,刚才这个图中,咱们已经标好了相对面,拿出来看时发现了吗?相对的两个面总是在一条路两边,咱们换一个正方体,剪开 后是这样,他们相对的面呢,也是在一条路两边,不过路变长了。 咱换一个正方体,剪开后是这样,他们相对的面呢,还是在一条路两边,路又变长了? 所以啊,只要是相对的面,总是在一条路两边,不过路可长可短。那在这个图中,这个正方形相对的面是哪个正方形呢? 咱们看在一条路两边,咱们去路对面找,那就是他啦。 知道了这个秘密,那下面哪个图不能折叠围成正方体呢? 第一个图,咱们利用一条路的方法,很容易找出全部相对的面, 可以围成正方体。同样的,第二个图也能找出三组相对面。 但是第三个图有两个正方形,没有相对面,所以不能围成正方体。其实 正方体的展开图有很多,比如这些咱们叫他一四一,这些叫他二三一,还有两个特殊的叫做三三和二二二,共有十一个,你可以折叠试试看哦。 今天咱们认识了正方体的展开图,他有三对相对面,并且相对的面面积相同。一个图要想围成正方体,就得有三组相对面, 而相对的面在一条长度可以变化的路的两边。怎么样,你学会了吗?

