00:00 / 05:53
连播
清屏
智能
倍速
点赞3988
物理光学 光学作为物理学的重要分支,研究光的本质、特性及其与物质相互作用的规律,其发展历程贯穿了人类对自然界的探索与认知。从古希腊哲学家对光线的思辨,到牛顿的棱镜实验揭开光的色散之谜,再到麦克斯韦电磁理论预言光是一种电磁波,直至爱因斯坦提出光子假说揭示光的波粒二象性——光学的发展史堪称一部科学革命的缩影。 从几何光学到量子光学。几何光学以光线模型为基础,通过反射定律和折射定律解释镜面成像、透镜聚焦等现象。斯涅尔在1621年提出的折射定律为光学仪器设计奠定数学基础,而费马在1657年提出的"最短时间原理"则揭示了光路选择的深层规律。波动光学的确立始于19世纪初。托马斯·杨的双缝干涉实验和菲涅尔的衍射理论证明光具有波动性,麦克斯韦在1865年将光纳入电磁波谱的理论体系,计算出光速与电磁波速的惊人一致。1888年赫兹通过实验证实电磁波存在后,光的电磁波本质终获公认。这一阶段发展的相干性理论、偏振特性等成果,直接催生了全息术、激光干涉仪等现代技术。量子光学的诞生源于黑体辐射研究的困境。1900年普朗克提出能量量子化假说,1905年爱因斯坦用光子概念解释光电效应,最终确立光的波粒二象性。1927年康普顿散射实验证实光子具有动量,量子电动力学则系统描述了光与物质的量子化相互作用。这些理论突破为半导体激光器、量子通信等技术提供了原理支撑。 从传统仪器到信息革命。光学显微镜的发展史颇具代表性。1590年詹森发明的复式显微镜仅能放大20倍,而阿贝在1873年提出的衍射极限理论指导研制出油浸物镜,使分辨率突破200纳米。2014年诺贝尔化学奖授予的超分辨荧光显微技术通过量子点标记和受激发射耗尽效应,将分辨率提升至20纳米级,实现了活细胞器动态观测。激光技术堪称20世纪最伟大的光学发明。1960年梅曼研制出首台红宝石激光器,其单色性、方向性和相干性远超传统光源。光纤通信彻底改变了信息传输方式 从超构表面到量子光源。超构材料开辟了光学设计新维度。量子光源技术推动第二次量子革命。单光子源和纠缠光子对是量子计算的核心资源。太赫兹技术填补电磁波谱空白。介于微波与红外之间的太赫兹波段具有穿透非极性材料、指纹谱识别等独特优势。从墨子的小孔成像实验到量子通信卫星,光学始终站在人类认知边界的最前沿。随着超分辨成像突破阿贝极限、量子调控达到单光子精度、光电融合重构信息范式,这门古老而年轻的学科将继续照亮科学探索之路
00:00 / 02:46
连播
清屏
智能
倍速
点赞1
00:00 / 00:30
连播
清屏
智能
倍速
点赞67
为什么说20世纪,是人类物理学史上最辉煌的一百年? 20世纪,是人类物理学史上最辉煌、也最震撼的一百年。从1900年到2000年,物理学家用一系列突破性的发现,彻底改变了我们理解世界的方式。本期视频将沿着时间线,带你回顾这场横跨百年的科学革命,看人类如何一步步揭开自然最深层的秘密。故事从普朗克提出能量量子化开始,一个看似“绝望”的假设,却意外终结了经典物理,拉开了量子时代的序幕。随后,年轻的爱因斯坦在1905年提出狭义相对论和质能方程,时间和空间不再绝对,质量与能量可以相互转化,人类的宇宙观被彻底重塑。原子不再是不可分割的基本单元,卢瑟福的金箔实验发现了原子核,玻尔的原子模型揭示了电子的量子化运动。进入20世纪20年代,德布罗意的物质波、海森堡的不确定性原理、薛定谔方程和狄拉克方程相继出现,量子力学逐渐成形,微观世界展现出前所未有的概率性与奇异性。随着中子被发现、核裂变被实现,人类第一次掌握了原子能,科技的力量开始深刻影响文明进程。战后,晶体管的发明引发信息革命,超导理论、夸克模型和电弱统一不断完善人类对物质结构的认知。标准模型的建立,成功描述了除引力之外的所有基本相互作用,成为物理学史上最成功的理论之一。20世纪末,量子霍尔效应和玻色—爱因斯坦凝聚的实现,让量子现象在宏观尺度显现。回望这一百年,这是一次关于思想、世界观与技术的巨大飞跃。今天的我们,正站在这些伟大发现的基础之上,继续追问宇宙的终极奥秘。 #物理学史 #20世纪思想史 #诺贝尔物理奖 #爱因斯坦相对论 #引力的本质是什么
00:00 / 03:44
连播
清屏
智能
倍速
点赞554
00:00 / 10:06
连播
清屏
智能
倍速
点赞NaN
00:00 / 06:46
连播
清屏
智能
倍速
点赞22
00:00 / 00:14
连播
清屏
智能
倍速
点赞19