粉丝449获赞3785

教会你小学常考的鸡兔同笼问题,我们来看题。鸡兔同笼,他们一共有二十二个头,七十条腿,鸡和兔各有多少只? 今天老师教大家用方程的方法来解这道题。那怎么用方程的方法呢?我们首先要找到题当中的等量关系。题中说他们一共有二十二只,说明鸡和兔一共有二十二只, 七十条腿,说明鸡和兔一共有七十条腿。那大家想一下,鸡有几条腿?对,每只鸡有两条腿,那每只兔呢?每只兔有四条腿。我们根据题中给的量,我们找到等量关系。等量关系是什么? 等量关系就是兔的腿数加鸡的腿数等于七十条。老师写下来, 兔的腿数加鸡的腿数等于七十条,就是这道题的等量关系。我们根据等量关系来列方程,我应该解设什么? 对,我应该解设兔有 x 之,那鸡有多少只呢?鸡和兔一共是有二十二个头,说明鸡和兔一共有二十二只,所以鸡有二十二减 x 之 好。知道了,这个我们来列方程。一只兔是四条腿,那么 x 只兔就应该是四 x 条腿, 这是兔的腿数加鸡的腿数。一只鸡有两条腿,那么括号二十二减 x 之,鸡就应该乘二二乘以括号二十二减 x 括起来,这是鸡的腿数,兔的腿数加鸡的腿数等于七十。 好,接下来我们来解方程,四 x 家用乘反分配律把这个式子拆开来写,二乘二十二减二 x 等于七十, 化简等于号。左边的式子结果是,四 x 减二 x 等于二 x 加二乘二十二是四十四,等于七十。 这时方程的左右两边同时减四十四,老师把这补省略了,就是二 x 等于二十六, 这时方程的左右两边同时除以二,除以二以后,方程左边除以二只剩下了 x。 方程右边除以二等于十二,十六除以二是十三,所以算的结果 x 等于十三,所以说兔有十三只,那既然兔有十三只,那么鸡有多少只呢? 鸡就是用鸡和兔的总数量,二十二只减十三只等于九只。 好我用方程的方法求出来了,兔有十三只,鸡有九只。那有同学说了,我刚才解设兔有 x 之,那我能不能解设鸡有 x 之呢?当然可以,我还可以这样解解, 假设鸡有 x 之,那么兔有二十二减 x 之。我依旧是根据上面的等量关系,兔的腿数加鸡的腿数等于七十,我可以这样列式,兔的腿数是四,乘以括号里的二十二减 x 加鸡有 x 之,那么一只鸡有两条腿,所以是二 x 等于七十。然后我把这个方程式拆开来写,变成了四乘二十二减四 x 加二 x 等于七十。这时方程的左右两边同时加四 x, 方程左边加四 x 以后,就把这个减四 x 给抵消掉了,方程左边就变成了八十八,加二 x, 方程右边就变成了七十加四 x, 这时方程左右两边再同时减二 x, 减二 x 以后,那么方程左边就剩了八十八,等于方程右边是七十,结果是加二 x。 我们习惯把含有未知数的像写到方程的左边,可以这样写,七十加二 x 等于八十八。这时方程的左右两边同时减七十,就变成了二 x 等于十八。 这时方程左右两边再同时除以二,把 x 前面这个二给消掉,就变成了 x 等于九, 解得方程 x 等于九,也就是说鸡有九只,那么兔有多少只呢?兔就是用鸡和兔的一共数量二十二只,减九等于十三只。 我用另外一种解方程的方法求出来了,鸡有九只,兔有十三只。 好,同学们,关于鸡兔同笼的问题,今天老师给大家用解方程的方法解除了正确答案,我们还有其他方法,比如假设法。明天老师会给大家用假设法来解鸡兔同笼的问题,记得给老师点赞加关注!

这道题不会啊,考试难上九十分,一起来看题。鸡兔一共一百只啊,鸡兔同笼问题啊,说鸡腿比兔腿多二十条,让我们求鸡兔各有几只,那鸡兔同笼问题呢?塑形结合就能解决, 注意看啊,这里鸡腿比兔腿多二十条。注意了啊,这里的数量关系是腿的数量关系啊。好,那一般作图我们从少了开始画啊,所以先画兔腿。 好,这部分兔腿鸡腿多二十条啊, 哎,这一部分就是多的二十条。来问一下大家,这个二十条对应的鸡应该是几只 啊?一只鸡两条腿,对吧?这里二十条,所以是二十除以二。哎,十十,好,这里是鸡啊, 好,那一共是鸡兔一百只。哎,把这十只先减掉, 这样是九十只,那这九十只里面有鸡有兔,那这里面的数量关系啊。注意了,是兔子的腿数量和鸡腿的数量,它们相等。 哎,这个要怎么分才能相等呢?来看一下啊,一只兔子四条腿,一只鸡两条腿,哎,我再加一只鸡两条腿,那这样鸡是不是也是四条腿了?哎,你看这样一组 兔子的腿和鸡的腿就相等了啊。好,兔子四条腿,两只鸡也是四条腿,这样是一只, 那这样九十只。来,仔细看啊,要怎么分啊?这里是一只兔子两只鸡,那一共是三只,这样是一组,现在是九十只,是不是九十除以三,这样就能分成三十 组了,对吗?好,仔细观察一下,这一组里面是不是只有一只兔子,现在是三十组,那有多少只兔子啊?三十乘以一,三十只。 好,这里是兔子啊,哎,那鸡呢?几只啊?一共一百只啊。好,鸡 是一百,减去三十,哎,七十至这下就做完了,你学会了吗?点赞,收藏,考试一定用得上!

在一个停车场上,有汽车和三轮摩托车,共四十一辆,这些车共有一百二十七个轮,那么三轮摩托车有多少辆? 你看啊,在这个问题中,它其实就是一个鸡兔同笼的变形体,那我们就要找到对应的关系,像汽车我们就可以看成是鸡兔同笼里面的兔兔,那它对应的就是有四只脚, 那再看这后面三轮摩托车三一,他三轮是七,但是他又比他一个三只脚,是吧?三只脚不是鸡变异了,而是你的思维变通了, 我们不要局限于他就一定只能四只脚,两只脚,你要根据不同的情境来变化。好,再看这个四十一辆 相当于什么一百二十七个轮子,角角角角角角角角角角角角角角 角角角角角角角角角角角角角角角角角角角角角角角角角角角角角角角角角角角角角角。 设未知数的方法要简单一些,度设度为 x, 也就是设角数多的为 x, 方便一些,对吧?那我们再看啊,这题他就问的是,那么三轮摩托车有多少辆?如果我直接设三轮摩托车有 x 量,这个方程会怎么样?好简好难,难解一些。 那如果难解一些,那我们就可以怎么样?换一下?换一下。哎,我就可以换射汽车有 x 量。好,都来试一试,对比一下。如果我是直接射三轮摩托车有 x 量,看这个方程是怎样的啊?好,先看三轮摩托车有 x 量,那么汽车就是多少辆, 总共是一减四十,一减 x 辆,是吧?好,然后把三轮摩托车的脚数表示出来,一辆摩托车有三个轮子,那么 x 辆摩托车就有三 x。 三 x 轮子,轮子好,一辆汽车有 四个轮子,那么四十减四十一减 x 二就是四十乘四十一减 x 二轮子,然后他的总下乘以七百二十七。好,他的这个方程 我们先展开一下啊,展开再加八十一百六十四减四, x 等于八百二十四。来看一下, 看到这三个人怎么了?这是三 x 减四是吧?不能直接计算,那我们等会一二两边同时去先消掉一个 six, 整个过程就比较麻烦了。对,昨天我们试了一下,整个写了一百,发现还写不下。哎, 既然这么复杂,我们不如换个思路,也就是射谁为 s 汽车?对啊,来,那我们一起来试试看啊。解射汽车有 s 量和 三轮车有四十一减 s 量好,来列。方程 汽车有 s 辆,一辆汽车有四个轮子,那么 s 辆汽车总共就是四个。四 s 个轮子加三轮车有这么多辆,一辆三轮车有三个轮子,所以三轮车的轮子数就是三乘 四十一减 s, 他 们总共有二百一百二十七。一百二十七。好,接着我们也展开一下,就是四 s 加一百二十三减三, 这个这个 x 加一百二十七,这不是可以直接计算了吗? x 加一百二十三,等于直接可以计算出来,就是 x 加一百二十三等于一百二十七。哎,可以三次算出来, x 是 四,简单些不简单。当然啊,这我们还只算出来是汽车,还请往后算谁呀?三十四减四等于三十七,四十三减四等于三十七八,怎么这么流行 啊?然后再做打打三轮摩托车有三十七辆。 来总结一下。呃,对于我们用方程思想来解决其不同的问题,设未知数的时候,建议你设角数多多的那一个啊,因为解方程的过程要简单一些,当然如果你想挑战一下,你也可以设角数少的,就是这个解方程要难一些啊,就不要出错。

同学们,今天我们学习的是鸡兔同笼的问题,首先我们来看看这道题,鸡和兔一共有五只腿,有十四条,请问鸡有几只?兔有几只? 首先我们可以这样用五个圆圈代表五只动物, 我们可以假设五只动物都是鸡,或者都是兔子,当然我们都是兔子有点不成立,因为四四五只兔子,那就二十条腿了,那我们就假设五只都是鸡, 然后每只鸡有几条腿,有两条腿,我们给他画上这样的话,我们图里边的五只动物就有了几条腿,十条腿,对不对?十条腿。那么我们的 题一共是有十四条腿,十四条腿减十,还剩四条腿,剩四条腿,那剩这四条腿肯定就是谁的, 肯定就是兔子的,对不对?每只兔子有几条腿呀? 每只兔子有四条腿,那么我们把剩的四条腿给我们的小圆圈匀上去,一条两条,一条两条, 这样是不是就是十四条腿了?那我们根据我们画的图是不是就可以看出来这里就是鸡有三只, 那这呢就是兔子有几只?有两只,同学们听明白了吗?

部小学数学五年级上册的学习课程,我是你们的燕子老师,鸡兔同笼的内容我们来深入的研究一下。在我国古代的时候,有一个非常著名的一本书叫 孙子算经,孙子算经里边有记载这样的一个小的数学题目是话是这样说的,说精有智,兔同笼,上有三十五头,下有九十四足, 问智兔各几何?这个智呢就代表的是鸡,这个兔呢就代表的是兔子。 哎,说对于这样的问题,我们该怎么解决呢?我们今天带的这个疑问来学习鸡兔同笼,最后我们来解决它好不好?来,首先我们来看一个小问题哈,说呢,鸡兔同笼,有九个头, 二十六条腿,问鸡和兔各多少只?哎,发现呢,鸡和兔呀,一共有九个头,一共呢有二十六条腿,现在问这个鸡和兔各有多少只?那孩子们来看, 那一共是九个头,我们并不知道到底有几只鸡,几只兔,我们怎么办呢?哎,我们可以假设呀,只有一只鸡, 那那八只呢?就应该都是兔子,那我们看一看这个腿数对不对呢?是不是?哎,我们可以尝试一下,那么对于这种尝试,我们不要乱尝试,你最好的办法呢?我们能有一个表格, 表格能够清晰明了的把我们的条件列出来,然后能够进行一个对比,我们可以实时的进行调整来,比如说看燕子老师画了一个图, 假设我们只有一只鸡,那么其他的八只呢?都是兔子,那这样的话就会有三十四条腿,那我们实际上呢是有二十六条腿的,差了一点对不对?哎,腿多了, 腿多了说明谁多了兔子,那我们就继续把兔子变少一点,兔子变少了,那鸡就会变得,哎,多一点是不是?那我就可以继续腿调整, 把鸡变成两只,兔子呢,就会变成七只,那这样腿数就是三十二条,还多,继续调整 啊,那把它变成三只,它就变成六只,那这里就变成了三十条腿,还是多不符合,继续调整,哎!依次类推,当调到这二十八条再调。 如果把鸡变成五只,兔子变成四只,那这样腿数正好是二十六条符合了,那这个问题是不是就解决了? 哎,这种方法呢,称之为叫列表法,我们用列表法能够清晰的看到,最终的结果是大了小了,我们就知道如何去调整。 ok, 好, 那么借助于列表法,我们可不可以解决孙子算经里边的问题呢?我们一起来看一下啊。孙子算经的这道题说金由鸡和兔关到一个笼子里,边 上有三十五头,就从上面来看呢,哎,有三十五个头,也就是鸡和兔一共三十五只, 下有九十四足,也就从下面看呢,一共有九十四条腿,哎,那么问你这个 鸡和兔各有多少只?那我们来列票试一试会怎样?好,那比如说哈,我们一个一个的来试,一个一个,跟上道题一样,一个一个的来列哈。 假如说我的鸡有一只兔子呢,一共三十五只兔子,就是三十四只腿呢,有一百三十八条不符合,那么继续,我可以让鸡两只,兔子三十三只腿呢,一百三十六,继续,还不符合, 那鸡三只,兔三十二,那腿一百三十四,还是不符合,继续列哇,列着列着,我的内心就 崩溃了,因为发现后边还要列好多好多才能达到九十四组, 对不对?所以你列着列着,你的内耐心就没了哈,你就快失去耐心不想列了。那你有没有想过我这样列既然太慢了,我们可不可以把步伐迈的大一点,不要一小步一小步一个一个去试, 对不对?我们可以采取,哎,一下多点啊。当我们列一个的时候呢,发现他是一百三十八,不符合,跟九十四比是不距离有点远, 腿数多的有点多了。所以呢,我可以让鸡的只数一下,不要一个一个的变,我可以多个变,比如我一下我就怎么样呀?哎,我就一下子把它变得兔子少一些, 鸡多一些,怎么变?嘿,我一下就把鸡变成十只会怎样?当它变十只,兔子一定就是二十五只, 对吧?那么腿数呢?一看,嘿,变成一百二,一下就少了很多,但一百二跟九十四还是差的还蛮多的,对不对?那我们怎么办?哎,腿呢还是多很多,兔子数应该还得减少。那咱们就继续把它减的 多一点,我一下就把鸡的只数调成二十,那兔的只数就变成了十五, 那腿的指数呢?哎,就变成了一百,哎,这跟九十四是不就接近的多了,但他还是不符合,我们可以怎样呀? 哎,我可以让他调的慢一点,再会调的微调哈,就不要十个十个调了,我现在五个五个调 由二十变成二十五,那这个就变成了十,腿呢?哎,就变成了九十,发现怎样?少了, 变成九十条了,这少了我们就可以把鸡的只数变得少一点, 兔的只数变得多一点,但现在调,那就是怎样呀?微调了对不对?哎,比他少一点,兔子数应该在十到十五之间,微微的调整就可以了。 那接下来我把他变成二十四,他变成十一,那腿就变成九十二,不够,那就继续,我让他少一点二十三,他十二,他变成九十四, ok, 满足条件 是不是?所以我们在调整的时候啊,你发现我可以不要一个一个去调,因为距离拉的很大,距离很远,多很多的时候,或者是少很多的时候,我们可以采取迈大步往前走。 ok, 好, 这是一种列表的方式哈,一个一个列太累,我们可以大步的往前走,当然我们还有其他的方法,比如说我可以选取这种列表方式,我怎么列呢?我可以让呢?鸡和兔,我假设他俩,哎,开始都差不多, 看看情况如何,对不对?来看,开始差不多一共三十五只,我就让他俩一个十七,一个十八,可不可以 鸡十七只,兔十八只,腿呢?嗯,一百零六条,多了一些,对不对?说明兔的只数多了,我们把鸡的只数 往多了调,兔的只数往少了调啊,那就让他怎样呀?哎,腿多了,兔子数就多了,那我就让 一变成二十,你不要一下调一个太慢,你可以多调几个,但是呢,这块跟那九十四差的又不是特别大,所以你调的个数也不要特别多。 好,我把它变成二十,那这个就变成十五,那结果还一百还多一点,是不是?我们继续再调,我可以让他再多两个,对吧?那么这个呢?再调少两个,那么最后,哎,九十六 差几条?差两条腿了,那么只需调一个就可以了,最后九十四条,满足条件, ok, 孩子们,这是我们列表的时候一些注意项哈,数小的时候,我们可以一个一个的试,一个一个的列,完全可以,但是数大了 多了,我们千万不要一个一个来,要不然的话真的是,嗯,好难受,对不对?最后没有耐心了哈,来,接下来孩子们给你们来列一道试一试, ok, 来,孩子们,你们列完了吗?接下来我们一起看啊。 说乐乐的,哎,储蓄罐里边有一角和五角的硬币,他一共呢有二十七枚,总共呢是五点一元。 问,一角的和五角的硬币各有多少枚?那这个是不是就相当于是鸡兔同笼啊?一角的硬币相当于是鸡,五角的硬币相当于是兔,一共呢二十七只, 一共呢?这五点一元,我们可以把它化成五十一角,对不对? 好了,孩子们,来看一下你们列表的情况哈,我们可以选择这两个,开始一多一少,也可以让他们的个数差不多,比如说我选择的就是他俩的个数,哎,也没有差距很大,一个是十枚,一个是十七枚,总价钱为九点五元, 不太多了,对吧?比五点一元多,说明这个个数 多了一些,我们把它调少一点,要调的不服大一点哟,哎,我可以让他直接变成二十,那么他就变成了七,那结果是五点五元,差的好少哟, 五点一和五点五差了一丢丢,我们再调一个啊,这个变成二十一,这个变成六,那最后就是五点一元,满足了。孩子们,你们也是这样调的吗? ok, 好, 那么对于本节内容,我们主要学习的是鸡兔同笼中的一种方法,叫列表法,对吧?所以我们在解决鸡兔同笼问题的时候呢,我们可以采取列表的方法来解决, 注意就是个数多和少,决定你列表的时候步伐迈的大还是小。 ok, 那 我们这节课内容就讲到关于基础同笼,我们可以采取的方法是列表法,那孩子们来用列表法解决一下这个问题。 ok, 好, 孩子们自己是不是通过列表解决了呢? 那这里边除了列表法,我需要一个一个的去列,或者是哎,多个一起调整。这种方式有同学会认为有点繁琐啊,会太慢了, 那有没有别的方法可以解决这个问题呢?孩子们想,其实我们在列表的时候呀,已经用到了一种思维方式,一种思考问题的解决方法叫什么? 假设法。 ok, 你 看我当把鸡这块写成八的时候,预示着我就假设所有的都是鸡,是这意思吗?当你写七的时候,那就假设有七只鸡 一直吐,这是一种假设,那能不能说我直接就用假设的方式把它解决了,而不用一个一个去假设呢?假设的次数有点多了,对不对?好,那我们来尝试一下,看看可不可以。 那么就这道题我们来看,一共有八个头,下面有二十六只脚,那你看我把这八只都当成鸡会怎样呢?也就是说我假设 全是鸡,一只鸡两条腿,所以八乘二,一共是十六条腿, 那十六条腿,我发现实际上呢,是有二十六只脚的,对不对?所以那我们会少了十只脚,那怎么样才能让脚多起来呢?那就把鸡 换成兔子,脚就会多,是不是?来,我们换一下哈。我们将一只鸡换成一只兔,有两条腿就变成了四条腿,你会发现我们会增加两只脚, 现在少十只换几次?换一次,多了两只,那我如果再换呢? 哎,换两次,多了四只再换。你看这两个就是多的,这两个也是多出来的,这两个也是多出来的。 换三只多六条腿,换四只,又多出两条,多八条再换。哎, 换到这的时候,是不是就能够比刚刚的假设情况多出十只,那这样的话,多出十只,我们的腿的数就正好了二十六条腿, 对吧?好,那么这样的话,兔子的只数就是你这里插了十只脚,每换一次能够使脚多出两只,所以我只需换五次,那就换来了五只兔子,所以兔子的只数为五只, 那鸡的只数呢?一共八只,减掉这五只,那就是三只,那鸡的只数为三只, ok 吗?孩子们需要注意哈,你假设都是鸡,你马上换的出来的就是兔子的只数, 是不是你假设都是鸡的时候呢?看你总共少了多少条腿,换一次会多出几条腿?需要换几次,那就是几只兔子, 明白吗?好,那么换一个方式。有同学说,老师,你假设都是鸡,那如果都假设是兔子,可不可以呢?我们一起看。 如果我假设所有的八只动物都是兔子, ok, 那 会有多少条腿呢?一只兔子四条腿,八只兔子四八,三十二只, 那么三十二只脚的话,跟我的二十六比,是不是多出了六只? 哎,那这样的话就会多出六只,那多了,我们就需要把兔子换成鸡来,一只兔子四条腿 就要换成鸡,变成两条腿,四条腿变成两条腿就会少两只。可是总共我们多出的是六只,换几次? 一次两只,那如果我要是再换一次呢?又两只,那就是四只,那我要再换一次呢?哎,又少两只,现在就少了六只了,那需要换三次,对不对? 由这个六和这个二的关系,一共多了六只,我需要每次少两只,所以换三次,而这三次也就换来了三只鸡,所以鸡的只数就是 三只,而兔的只数呢?那就是八减三,等于五只,明白了吗?来,你看啊,我假设它都是兔子的时候呢,我这里求出来的就是鸡,就是你换的次数,对应的就是鸡的只数。 ok, 好, 这是假设法来解决鸡兔同笼。当然很多其他的,你可能会听到有什么鸡飞法、 砍腿法、绊腿法等等很多其他的方法。实际上孩子们都是源自于假设法,只是给了他不同的名字,对吧?比如说鸡非法,也就是每人抬起两条腿,那不就 变成了把兔子变成鸡吗?是不是?哎,类似的都是假设思想,假设方法,明白吧? 哎, ok, 好, 那么接下来孩子们自己做一下下面这道题,用假设法来做一下, ok, 好, 孩子们来看。全班一共有三十八个人, 一共租了八条船,大船每船坐六人,小船每船可以坐四人,每条船都要坐满。哦。问,大船小船各租几条?两种方式,你可以假设都是大船,你也可以假设都是小船, 好,我们一起看啊。如果我们假设他都是小船的话,哎,每船坐四人,我们有八条船,四八三十二人, 那一共其实是有三十八人的,那这样的话,我们就会有少六人,对不对?有六个人上不了船,那就把小船换大船, 一条小船换成大船,会多几个人上船,多两个人,对吧?所以呢,哎,这六就除以二,得到三条大船换三次就可以了,那么小船的个数就为五条, 记得要答哟! ok, 那 我也可以假设都是大船,一条大船坐六人,六八四十八人,那就会空出多少个座位来。 空出十个座位,可是要求都坐满,那我们就把大船换小船,由六人船变成四人船,换一次两个座位就可以 减少,对吧? ok, 那 换几次呢?十除以二换五次就可以了,所以小船五条,大船三条,那这个问题就解决了。 ok, 孩子们,那刚刚我们又讲过了一种叫鸡吐头龙的另外一种解析方式就是假设法,无论鸡飞砍腿,假设列表,实际上都是由假设思维 在里边的,所以这里边孩子们掌握了对你的假设思维,数学思维的培养是非常有帮助的。 ok, 孩子们一定要努力的认真的完成每一个鸡兔同笼的问题,好吗? 好,我们来总结一下今天所学的内容哈。在解决鸡头同笼问题的时候呢,我们可以借助于列表法来猜测他们的数量关系,也可以借助于假设的方法。我可以假设都是鸡,也可以假设全部都是兔子的方式,找到 相差的数量再去替换啊,然后用这样的方法也可以解决。 ok, 好 了,孩子们,我们这节课的内容就讲到这里了,我们。

今天我们来讲鸡兔同笼,以前我们用算术方法可以解决,今天我们挑战用方程来解决。 先来读题,农场的围栏有鸡和兔子,上面数一共有二十八个头,下面数八十六条腿,问鸡和兔子各有几只?这里提到两个量头和腿,那我们以谁为切入点解设未知数呢?分别试一试。以腿为例 解设鸡有 x 条腿,很多同学想兔的腿数是鸡的两倍,直接设兔的腿数为二 x, 这时候就出现了错误,因为鸡和兔的之数不相等,那就需要我们用总数八十六条腿减去,鸡的 x 条腿就是兔的, 所以兔子有八十六减 x 条腿。我们用了腿的信息来设未知数,那我们用头的信息来列方程,鸡有 x 条腿,每只鸡两条腿,所以鸡有 x 除以二只,兔 有八十六减 x 条腿,每只兔是四条腿,所以兔有八十六减 x 的 叉,除以四, 把两部分合起来,一共有二十八只。仔细观察这一方程复杂且不易计算,这样的方法我们不建议孩子使用,以腿为切入点解决起来较为复杂。我们换个思路,以头为切入点, 那我们设鸡的只数有 x 值,也就是头有 x 个,那兔就有二十八减 x 值。我们用腿的信息来列方程,每只鸡有两条腿,一共有二 x 条腿,每只兔有四条腿,用四去乘二十八减 x 的 叉, 最后把两部分合起来,一共等于八十六条腿。我们把方程进行化解,对括号二 x 加乘法分配率一百一十二,再减去四 x 等于八十六。此时观察发现,二 x 减四 x, 出现了负,二 x 加一百一十二, 涉及到了负数,有些孩子理解起来较为困难,其实他也等于一百一十二减二 x, 最终等于八十六。负数在六年级学习后,会理解的更加透彻,能理解的我们可以使用这样的方法,理解起来较为困难的我们也可以再换一换。 刚才我们设基有 x, 这次我们可以设负有 x, 设 to 有 x 之,那基有二十八减 x 之。 根据腿的数量列出等量关系。四 x 加二乘二十八减 x 的 差等于八十六, 依次进行推括号化解。四 x 加五十六减二 x 等于八十六,左边合并 x 就 等于五十六,加二 x 等于八十六。方程解答过程省略, 最终解出 x 等于十五。我们设 to 有 x 之,随 to 有 十五之,相应的即有十三之。回顾整个过程,方法可以多种多样,但设 to 的 值数 to 有 x 之,这样的方法更为方便。我们看下面的便是模型。学校组织活动,需要六十二名学生安排住宿, 有两种房间,两人间每间住两人,四人间每间住四人,定了二十间房,正好住满。问 两人间和四人间各顶多少?那这时候也属于鸡兔同笼典型问题,我们要考虑谁相当于鸡,谁相当于兔。那这里的两人间指一间房住着两个人,也就是一个鸡头有两只脚, 那这里的四人间就相当于是兔四人间,一间房四个人,也就是一个兔头四只脚。题目中的一共二十间房,就指一共有二十个头,六十二名学生也代表一共有六十二只脚,这样的类型你会解答了吗?